Graph Processing: A Panoramic View

Some Open Problems

M. Tamer Ozsu

University of Waterloo
David R. Cheriton School of Computer Science
https://cs.uwaterloo.ca/~tozsu

WATERLGO| DBSE:

© M. Tamer Ozsu VLDB 2019 (2019/08/27)

1


https://cs.uwaterloo.ca/~tozsu

Graph Research is Dispersed

Knowledge graphs
Semantic Web

Graph Graph
Databases Analytics



Graph Research is Dispersed

Graph Theory

Graph Graph
Algorithms Systems

© M. Tamer Ozsu VLDB 2019 (2019/08/27) 2



Graph Research is Dispersed

Database

Social

Data Mining Computing

Al/ML

© M. Tamer Ozsu VLDB 2019 (2019/08/27) 2



Graph Research is Dispersed

Knowledge graphs
Semantic Web

Graph ? Graph

Databases Analytics
Database
Graph Theory
Data Mining Socia!
Computing
Graph Graph
Algorithms Systems
Al/ML

© M. Tamer Ozsu VLDB 2019 (2019/08/27) 2



rnghree things...

O Discuss a way to coherently position work in the various
communities;

@ A tour across different communities to provide a panoramic
view of the research;

© Highlight some problems that interest me! ]

Knowledge graphs
Semantic web

Graph
DGBrEIl\lll)g Analytics
s Systems
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O Discuss a way to coherently position work in the various
communities;

@ A tour across different communities to provide a panoramic
view of the research;

© Highlight some problems that interest me! ]
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Knowledge graphs
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Freud's Recommendation for a Good Talk...

By Way of Moshe Vardi...
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Introduction ]
RDF Engines

Graph DBMSs

Graph Analytics Systems

Dynamic & Streaming Graphs

Concluding Remarks
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In the beginning...

Aircraft

... there was IMS

e By IBM (along with
Rockwell & Caterpillar)

@ For the Apollo program
o First deployed in 1968

@ Managing Bill of Materials
(BOM) of Saturn rocket

@ Hierarchical model because
BOM is hierarchical

Fuselage FWD

Section 4

Section 43

Fuselage AFT

Section 46

Right Wing
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In the beginning...

. and IDS

Supplier - Customer Order (] By GE
Submits
2 o Tocontrol their
Sers Suppled by—, Roquests manufacturing processes
sentby _ Reausstsdan o First deployed in 1964
Shipment Item Product .
s o Lsedin e [ @ Manufacturing processes
ftem? Included on tem? ltem2 . . .
fem3 fem3 Hem3 (with scheduling constraints)

form a graph
@ Network model
o Led to CODASYL standard

Source: https://dba.stackexchange.com/questions/
119380/er-vs-database-schema-diagrams
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Network DBMSs

o P ™ ™ Current state of the database
roduct__ ) [@ Product
e o[ assmer) o Cater Y on ) onmn *
S Product_ 3 Customer ORepresent Prame Prame |:vnu iJjcr 2 _Jre [ _Jire 2|
prt P re [ ] Pice [100 || Price [500 ] Cname Cname[Deen]| |Rname|Codd || [RnamelOlle |
Prame [ Cramel ] Rname| | — S
Price | I
CcT 2 T
e @Transaction anamacuun @Transaction
PT Dal’:"’"&l RT Date Date Date
. [ Qnt o )= ant 20— ant
Tpiice || Tprice Tprice [ 110 ]|~ Tprice
F ]

CODASYL Language

> FIND with key

» Navigate within the set, within elements of the same
record type, etc

Source: Network (CODASYL) Data Model, https://coronet.iicm.tugraz.at/is/scripts/lesson03.pdf
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Network DBMSs

S S Current state of the database
@ Product @ Product
Frodue S Casiomer™ 3 Customar™ (S (et
e Bl e e e ]
@ Product__ 3 Customer (ORepresent Pname [CPU J|| Pname VDU
mo [ o Re [ Pice [100 || Pice [500 | Cramesm | cremelGee nomogear | [FnomeTe |
Prame [ Cname| ] Rname—] =

T Date Date Date
. [ Qnt o ] ant 20— ant
= Tprice Tpiice =] Tprice

]

£3

Pice || Tl -_*Il !_T ! I u
T 41_“ - R @Transaction ar.amacuun “‘ @Transaction ]

CODASYL Language

> FIND with key

» Navigate within the set, within elements of the same
record type, etc

Network models were also used in
> Object DBMSs
> XML

Source: Network (CODASYL) Data Model, https://coronet.iicm.tugraz.at/is/scripts/lesson03.pdf
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Network DBMSs

@ Product @ Product S Current state of the database

@ Product__ @ Customer ORepresent Pname [CPU | Prame [vDU]|[CF  [L_Jl|c¥ 2_JIR¢ 1]
Pt cr R¢ [ Pice [100 ]| Piice [500 ]| |Cname[Smith]| Cname[Deen
Prame [ Cramel ]| |Rname| ]
Price

— e 1

_ @Transaction
PT @Transaction RT s =

¢ set, within elements of the same

Network models were also used in
> Object DBMSs
> XML

Source: Network (CODASYL) Data Model, https://coronet.iicm.tugraz.at/is/scripts/lesson03.pdf
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Modern graphs are different and diverse

World Trade 1994
Residuals Model 1

i

Trade volumes and

Internet )
connections

intemationat & Road Network T

Linked data

Road network
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Graph Usage Study [Sahu et al., 2017, 2019]

@ What kind of graph data, computations, software, and major challenges real users
have in practice?

@ What types of graph data, computations, software, and major challenges
researchers target in publications?

» Online survey » Personal interviews
@ 89 participants: 36 researchers; @ 4 interviews with survey
53 industry participants
@ 22 graph software products @ 4 additional in-person interviews:
» Review of academic publications 2 developers and 2 users
@ 7 conferences, 3 yrs for each » Applications from white papers
@ 252 papers @ 4 graph DBMSs + 4 RDF

engines

@ 12 applications from graph
DBMSs + 5 from RDF engines
(with overlap)

» Review of emails, bug reports, and
feature requests
@ over 6000 emails and issues

© M. Tamer Ozsu VLDB 2019 (2019/08/27) 9



Major Findings [Sahu et al., 2017, 2019]

© Graphs are indeed everywhere!
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Major Findings [Sahu et al., 2017, 2019]

© Graphs are indeed everywhere! Entity #Part.

Q1. Which real world entities do your Humans a4

(e.g., customers,
graphs represent? friends)

Non-human entities 61
(e.g., web, products,
files)
RDF 23
Scientific 15
(e-g., proteins,
molecules, bonds)
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Major Findings

© Graphs are indeed everywhere!
Q1. Which real world entities do your
graphs represent?
Q2. Which non-human entities do your
graphs represent?

Entity #Part.
Web 4
Bus. & Financial 8
Product 13
Geo 7
Infrastructure 9
Digital 5
Knowledge 11

@© M. Tamer Ozsu

VLDB 2019

[Sahu et al., 2017, 2019]

Entity #Part.
Humans 44
(e.g., customers,
friends)
Non-human entities 61
(e.g., web, products,
files)
RDF 23
Scientific 15
(e-g. proteins,
molecules, bonds)
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Major Findings

© Graphs are indeed everywhere!
Q1. Which real world entities do your
graphs represent?
Q2. Which non-human entities do your
graphs represent?

Entity #Part. | #Papers
Web 4 30
Bus. & Financial 8 8
Product 13 2
Geo 7 11
Infrastructure 9 2
Digital 5 0
Knowledge 11 3
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(e.g., web, products,
files)
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Major Findings

© Graphs are indeed everywhere!
Q1. Which real world entities do your
graphs represent?
Q2. Which non-human entities do your
graphs represent?

@ Graphs are indeed very large!

@© M. Tamer Ozsu VLDB 2019
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|E| #Part.
<10K 23
10K-100K 22
100K-1M 13
1M-10M 9
10M-100M 21
100M-1B 21
>1B 20

7##Bytes #Part.
<10MB 23
10MB-100MB 22
100MB-1GB 13
1GB-10GB 9
10GB-100GB 21
100GB-1TB 21
>1TB 20
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Major Findings [Sahu et al., 2017, 2019]

© Graphs are indeed everywhere!

Q1. Which real world entities do your
graphs represent?

Q2. Which non-human entities do your
graphs represent?

@ Graphs are indeed very large!

© ML on graphs is very popular!

o At least 68% of respondents use ML
workload

© M. Tamer Ozsu VLDB 2019 (2019/08/27)



Major Findings

[Sahu et al., 2017, 2019]

© Graphs are indeed everywhere!

Q1. Which real world entities do your
graphs represent?

Q2. Which non-human entities do your
graphs represent?

@ Graphs are indeed very large!
© ML on graphs is very popular!
o At least 68% of respondents use ML
workload
@ Scalability is the most pressing
challenge!

e Followed by visualization & query
languages

@© M. Tamer Ozsu VLDB 2019

(2019/08/27)



Major Findings

o

©0

Graphs are indeed everywhere!

Q1. Which real world entities do your
graphs represent?

Q2. Which non-human entities do your
graphs represent?

Graphs are indeed very large!
ML on graphs is very popular!
o At least 68% of respondents use ML
workload
Scalability is the most pressing
challenge!
e Followed by visualization & query
languages

RDBMS still play an important role!

@© M. Tamer Ozsu VLDB 2019
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More Info — Please read the papers

The Ubiquity of Large Graphs and Surprising Challenges
of Graph Processing
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How | Think of This Domain!...

Graph Types Graph Dynamism Algorithm Types Workload Types
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How | Think of This Domain!...

Graph Types Graph Dynamism Algorithm Types Workload Types

L

RDF  Property
Graphs Graphs

© M. Tamer Ozsu VLDB 2019 (2019/08/27) )



How | Think of This Domai

Graph Types Graph Dynamism Algorithm Types Workload Types

L

RDF  Property
Graphs Graphs

Graph Characteristics

(Not complete)
Degree distribution; max degree

Diameter
Global/local density

Connectedness
Directed /undirected

Weighted /unweighted
Homogeneous/heterogeneous
Simple/multi/hyper

@© M. Tamer Ozsu VLDB 2019



How | Think of This Domain!...

Graph Types Graph Dynamism Algorithm Types Workload Types

B

RDF  Property Static Dynamic Streaming
Graphs Graphs Graphs Graphs Graphs
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How | Think of This Domain!...

Graph Types Graph Dynamism Algorithm Types Workload Types
RDF  Property Static Dynamic Streaming Online Analytics
Graphs Graphs Graphs Graphs Graphs Queries Workloads
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How | Think of This Domain!...

Graph Types

L

Graph Dynamism Algorithm Types

!—’—\

RDF  Property Static Dynamic Streaming
Graphs Graphs Graphs Graphs Graphs

Workload Types

i

Online Analytics
Queries Workloads

Offline

Online

Dynamic

@© M. Tamer Ozsu
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Example Design Points

Graph Type Graph Dynamism Algorithm Types Workload Types
I I I I
RDF  Property Static Dynamic Streaming Online Analytics
Graphs Graphs Graphs Graphs Graphs Queries Workloads
| | |
Offline Online Dynamic

Compute the query result over the graph as it exists.

© M. Tamer Ozsu VLDB 2019 (2019/08/27) 13



Example Design Points

Graph Type Graph Dynamism Algorithm Types Workload Types
I I I I
RDF  Property Static Dynamic Streaming Online Analytics
Graphs Graphs Graphs Graphs Graphs Queries Workloads
| | |
Offline Online Dynamic

Compute the query result over the graph incrementally.

© M. Tamer Ozsu VLDB 2019 (2019/08/27) 13



Example Design Points

Graph Type Graph Dynamism Algorithm Types Workload Types
I I I I
RDF  Property Static Dynamic Streaming Online Analytics
Graphs Graphs Graphs Graphs Graphs Queries Workloads
| | |
Offline Online Dynamic

Perform the analytic computation from scratch on each snapshot.

© M. Tamer Ozsu VLDB 2019 (2019/08/27) 13



Example Design Points — Not all alternatives make sense

T

Graph Type Graph Dynamism Algorithm Types Workload Types
I I I I
RDF  Property Static DynamicStreaming Online Analytics
Graphs Graphs Graphs Graphs Graphs Queries Workloads
| | |
Offline Online Dynamic
I
Batch
Dynamic

Dynamic (or batch-dynamic) algorithms do not make sense for static graphs.

© M. Tamer Ozsu VLDB 2019 (2019/08/27)
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Alternative Classification

@ Inputs
e Input ingestion
o Generative model
@ Queued/non-queued
o ...
e Input data
o Graph type
o Graph characteristics
e Graph dynamism
e ...
e Input workload
o ...

@ Processing
o Algorithms ...
o Output
o Output generation (or release) time

o Output type
e Output interface

© M. Tamer Ozsu VLDB 2019 (2019/08/27) 15



Graph System Architectural Design Decisions

@ Disk-based vs memory-based
e Most graph analytics systems are memory-based
o Others are mixed

@ Scale-up vs scale-out
o Controversial point discussed next

o Computing paradigm

o A number of alternatives exist
o Discussed separately for each type of system

© M. Tamer Ozsu VLDB 2019 (2019/08/27)



Scale-up or Scale-out?

@ Scale-up: Single machine execution
o Graph datasets are small and can fit in a single machine — even in main
memory
o Single machine avoids parallel execution complexities (multithreading is
a different issue)

@© M. Tamer Ozsu VLDB 2019



Scale-up or Scale-out?

@ Scale-up: Single machine execution
@ Scale-out: Parallel (cluster) execution
o Graph data sets grow when they are expanded to their storage formats
e Workstations of appropriate size are still expensive
e Some graphs are very large: Billions of vertices, hundreds of billions of
edges
o Dataset size may not be the only factor = parallelizing computation is
important
e Applications may operate in a distributed environment
Downside: graph partitioning is difficult

[ Dataset [ V] [ [E] [ Regular size | Single Machine™ |
Live Journal 4,847,571 68,993,773 1.08GB 6.3GB
USA Road 23,947,347 58,333,344 951MB 9.09GB
Twitter 41,652,230 1,468,365,182 26GB 128 GB
UKO0705 82,240,700 2,829,101,180 43GB 247GB
World Road 682,496,072 717,016,716 15GB 194GB
CommonCrawl2014 1,727,000,000 64,422,000,000 1.3TB Out of memory

* Using (PowerLyra)

. Tamer Ozsu VLDB 2019 (2019/08/27) 17



Scale-up or Scale-out?

@ Scale-up: Single machine execution
@ Scale-out: Parallel (cluster) execution

Scale-out is the only way to go!...

There is no way to deal with the emerging real graph sizes on single
(ordinary) machines

© M. Tamer Ozsu VLDB 2019 (2019/08/27) 17



Scale-up or Scale-out™

4

DEPARTMENT: Big Data Bites

Scale Up or Scale Out for Response to “Scale Up or
Graph Processing? Scale Out for Graph
Processing”

Jimmy Lin s column explores a simpl queston: scale up o
scale out forgraph processing? Shouid we simply

throw “beafer” ndvidual mul-core, large-memory st the o N
i his arico, the authors provid thor viows 00

‘whather organizatons shouid scale up or scale out
theirgraph computations. This queston s explred
2 previous instalment of s column by Jimmy Lin,
where ha made a casa fo scale-up hrough several
examples. I response, the authors discuss tree.
cases for scale-out,

dotit Under what
Gireumstances should we prefer one approach ove the oiner?

. Tamer Ozsu VLDB 2019



Graph Systems

RDF Engines

Jena DB2-RDF
Virtuoso

EAGRE RDF-3X
gStore

Ti
'tan GraphLab

JanusGraph Haloop

Neo4j Sparksee Pregel /Giraph
. TurboGraph

Oieills Vil Graurh(C)hirapBI—oFtl

TigerGraph ; B

GraphX Graph Analytics
Systems

Graph DBMSs CrapalilElan

There are a number of othersl...

@© M. Tamer Ozsu VLDB 2019 (2019/08/27) 18



Graph Systems

Amazon Neptune RDF Engines

Oracle Spatial & Graph Jena DB2-RDF

Virtuoso

EAGRE RDF-3X
gStore

T
ftan GraphLab

JanusGraph Haloop

Neo4j Sparksee Pregel /Giraph
. TurboGraph

Oieills Vil Graurh(C)hirapBI—oFtl

TigerGraph ; B

GraphX Graph Analytics
Systems

Graph DBMSs CrapalilElan

There are a number of othersl...
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RDF Engines |
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RDF Example Instance

Prefixes: mdb=http://data.linkedmdb.org/resource/; geo=http://sws.geonames.org/
bm=http://wifo5-03.informatik.uni-mannheim.de/bookmashup/
lexvo=http://lexvo.org/id /;wp=http://en.wikipedia.org/wiki/

Subject Predicate Object
P {—mdb: film/20147— rdfs:label <{""The Shining
mdb:film /2014 movie:initial_release_date | “1980-05-23"" \

U Rl mdb:film /2014 movi

rector mdb:director/8476 | I—Ite ral

mdb:film /2014 movie:actor mdb:actor/29704

mdb:film /2014 movie:actor <mdb:_actor/30013—

mdb:film /2014 movie:music_contributor | mdb: music,contribut((mlﬂu\

mdb:film /2014 foaf:based_near ge0:2635167

mdb:film /2014 movie:relatedBook bm:0743424425 U Rl
mdb:film /2014 lexvo:is0639-3/eng

mdb:director/8476 “Stanley Kubrick”

mdb:film /2685 movie:director mdb:director/8476
mdb:film /2685 rdfs:label “A Clockwork Orange”

mdb:film /424 movie:director <[ “mdb:director/8476 —
mdb:film /424 rdfs:label “Spartacus”
mdb:actor/29704 movie:actor_name “Jack Nicholson™

mdb:film /1267 movie:actor mdb:actor/29704

mdb:film /1267 rdfs:label “The Last Tycoon”
mdb:film /3418 movie:actor mdb:actor/29704

mdb:film /3418 rdfs:label “The Passenger”
ge0:2635167 gn:name “United Kingdom”
£e0:2635167 gn:population 62348447

ge0:2635167 gn:wikipediaArticle wp:United_Kingdom
bm:books/0743424425 | dc:creator bm:persons/Stephen+King
bm:books/0743424425 | rev:rating 4.7

bm:books /0743424425 | scom:hasOffer bm:offers/0743424425amazonOffer
lexvo:is0639-3/eng rdfs:label “English”
lexvo:is0639-3/eng Ivont:usedIn lexvo:is03166,/CA
lexvo:is0639-3/eng Ivont:usesScript lexvo:script/Latn

M. Tamer Ozsu




RDF Graph

‘ “The Passenger” ‘ ‘ “The Last Tycoon” ‘
wp:UnitedKingdom refs:}abel refs:fabel
‘ mdb-film/3418 ‘ ‘ mdb:film /1267 ‘

‘ bm:offers/0743424425amazonOffer ‘ gniwikipediafirticle

‘ “United Kingdom” ‘ ‘62348447‘
scam:RagOffer N Moviesactor movigactor
gn'rame  gn:popdlation
bm:persons/StephenKing ‘Sjm( bm:books /0743424425 ‘ £€0:2635167

mdb:actor/29704

movie:rétatedBook . ie:
movieactor _
“Jack Nicholson™”
“The Shining” refs:label mdb:film,/2014 musnc,contnbutor

e la e
movieinitial_releasp_date
movie:actor

mdb:actor/30013
rgt-label Ivont:use
Ivont:pisedin

foaf:baged_near

lexvo:is0639_3 /eng

moviedirector  movieMdirector

Script

lexvo:script/latin

movie:actef_name

‘ “Spartacus” ‘ ‘ “Shelley Duvall” ‘ lexvo:is03166/CA

Tamer Ozsu




SPARQL Queries

SELECT ?name

WHERE {
m rdfs:label ?name. ?m movie:director 7d.
?7d movie:director_name "Stanley Kubrick”.
?m movie:relatedBook 7b. ?b rev:rating 7r.
FILTER(?r > 4.0)

}

FILTER(?r > 4.0)

rev:rating
‘ @ “Stanley Kubrick”

) movie:relatedBook .
rdfs:labe movie:director_name

m — >
movie:director

© M. Tamer Ozsu VLDB 2019 (2019/08/27) 22



Direct Relational Mapping
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Direct Relational Mapping

Bad Ideal...

© M. Tamer Ozsu VLDB 2019 (2019/08/27) 23



Direct Relational Mapping

SELECT ?name

WHERE {
?m rdfs:label ?name. ?m movie:director 7d.
?7d movie:director_.name "Stanley Kubrick”.
?m movie:relatedBook ?b. 7?b rev:rating 7r.
FILTER(?r > 4.0)

}

Subject Property Object

mdb:film/2014 rdfs: abel "The Shining”

mdb:film /2014 moviesinitial.release.date | “1080-05-23" i

mdb:film /2014 movie:director mdbdirector/8476 SELECT T1.object

mdb:film/2014 movie:actor mdb:actor/29704 FROM T as T1, T as T2, T as T3,

mdb:film /2014 movie:actor mdb: actor/30013

mdb:film/2014 movie:music_contributor | mdb: music_contributor/4110 T as T4, T as T5

mdb:film /2014 foaf:based-near £00:2635167 " .

mdb:film /2014 movie:relatedBook bm:0743424425 WHERE T1. p="1r dfs:label

mdb:film /2014 movie:language lexvo:iso639-3/eng " . "

mdb:director/8476 | movie:director_name “Stanley Kubrick” AND T2.p="movie:relatedBook

mdb:film /2685 jecdi irector/8476 . . I "

mdb:film/2685 rdfs:label “A Clockwork Orange” AND T3. p= movie: director

mdb:film,/424 movie:director mdb:director/8476 .

mdb:film /424 rdfs:label “Spartacus” AND T4. p=" rev:rating "

mdb:actor/29704 movie:actor-name “Jack Nicholson” " P "

mdb:film,/1267 movie:actor mdbactor/20704 AND T5.p="movie:director_name

mdb:film /1267 rdfs:label “The Last Tycoon”

mdb-film,/3418 movie:actor mdb:actor /20704 AND T1.s=T2.s

mdbfilm/3418 rdfs:label “The Passenger” -

02635167 gniname “United Kingdom” AND T1.s=T3.s

g¢0:2635167 gn:population 62348447 -

£€0:2635167 gn:wikipediaArticle wp:United_Kingdom AND T2.0=T4.s

bm:books /0743424425 | dc:creator bm:persons/Stephen+King -

bm:books/0743424425 | rev:rating 47 AND T3.0=T5.s

bm:books/0743424425 | scom:hasOffer bm:offers/0743424425amazonOffer

lexvo:iso639-3/eng | rdfs:label “English” AND T4.0 > 4.0

lexvo:iso639-3/eng | Ivont:usedin lexvo:is03166/CA _n Rt
et ) pineiny A AND T5.0="Stanley Kubrick

. Tamer Ozsu




Direct Relational Mapping

SELECT ?name
WHERE {
?m rdfs:label ?name. ?m movie:directg
?7d movie:director_.name "Stanley

?m movie:relatedBook ?b. ?b rev: (0] Implement
FILTER(?r > 4.0) but

}

Subject Property Object P - l

mdb:film/2014 rdfs:Tabel “The Shining" too ”] ny sel - O| n S

mdb:film /2014 moviesinitial.release.date | “1080-05-23" .

mdb:film /2014 movie:director mdbdirector/8476

mdb:film /2014 movie:actor mdb:actor/20704

mdb:film /2014 movie:actor mdb: actor/30013

mdb:film /2014 movie:music_contributor | mdb: music_contributor/4110

mdb:film /2014 foaf:based-near £00:2635167

mdb:film /2014 movie:relatedBook bm:0743424425 WHERE T1. p="r dfs:

mdb:film /2014 movie:language lexvo:iso639-3/eng " 3 .

mdb:director/8476 | movie:director_name “Stanley Kubrick” AND T2.p="movie:rela Book

mdb:film /2685 movie:director mdb:director/8476 . I

mdb:film /2685 rdfs:label “A Clockwork Orange” AND T3 . p:" movie: d Iirector "

mdb:film,/424 movie:director mdb:director/8476 .

mdb:film /424 rdfs:label “Spartacus” AND T4. p=" rev:rating "

mdb:actor/29704 movie:actor-name “Jack Nicholson” " P "

mdb:film,/1267 movie:actor mdbactor/20704 AND T5.p="movie:director_name

mdb:film /1267 rdfs:label “The Last Tycoon”

mdb-film,/3418 movie:actor mdb:actor /20704 AND T1.s=T2.s

mdbfilm/3418 rdfs:label “The Passenger” -

02635167 gniname “United Kingdom” AND T1.s=T3.s

g¢0:2635167 gn:population 62348447 .

£€0:2635167 gn:wikipediaArticle wp:United_Kingdom AND T2.0=T4.s

bm:books /0743424425 | dc:creator bm:persons/Stephen-King -

bm:books/0743424425 | rev:rating 47 AND T3.0=T5.s

bm:books/0743424425 | scom:hasOffer bm:offers/0743424425amazonOffer

lexvo:iso639-3/eng | rdfs:label “English” AND T4.0 > 4.0

lexvo:iso639-3/eng | Ivont:usedin lexvo:is03166/CA _n Rt
et ) pineiny A AND T5.0="Stanley Kubrick
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Optimizations to Tabular Representation

Objectives

@ Eliminate/Reduce the number of self-joins

© Use merge-join

© M. Tamer Ozsu VLDB 2019 (2019/08/27) 24



Optimizations to Tabular Representation

© Eliminate/Reduce the number of self-joins

@ Use merge-join

@ Property table
o Group together the properties that tend to occur in the same (or
similar) subjects
o Examples: Jena , DB2-RDF
@ Vertically partitioned tables
o For each property, build a two-column table, containing both subject
and object, ordered by subjects
o Binary tables
© Exhaustive indexing
o Create indexes for each permutation of the three columns: SPO, SOP,
PSO, POS, OPS, OSP
o RDF-3X , Hexastore

@© M. Tamer Ozsu VLDB 2019 (2019/08/27) 24



Graph-based Approach [Zou and Ozsu, 2017]

o Answering SPARQL query = subgraph matching using homomorphism

@ gStore , chameleon-db

FILTER(?r > 4.0)
revirating Sub ‘ “The Passenger” ‘ ‘ “The Last Tycoon” ‘
@ @ “Stanley Kubrick -
s'o wp:UnitedKingdom refs:’abel refs:’abe\
rdfs:labe fovie:director_name %
@ ) ‘ mdb:film/3418 ‘ ‘ mdb:film/1267 ‘
bm:offers /07434244 Offer 9( " tee
Gy, itet ingdom” 62348447
scam:hagOffer N = ovikactor movigfactor
‘ bm:persons/StephenKing ’-‘M{ bm:books/0743424425 | & /
mdb:actor/29704
ng
movieretatedBook  foaf:baged_near . movie:atter name
” “Jack Nicholson”

’—‘“Stanley P ‘"Thesmmng"} refsilabel Jmdb.mm/mu}muswc,conmhutov:l‘ ——

movie:difector

movie:dir r_name

mdb:director/8476

movie:initial_releasp_date
movie:ai ?‘r

mdb:actor/30013
Tgtfabel Ivont:use3Script
lexvo:script/la

lexvoriso639.3/eng

movieXirector

mdb:film /424

director

movi

“A Clockwork Orange” lexvoriso3166/CA
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Graph—based /—\pproach [Zou and Ozsu, 2017]

@ Answering SPARQL query = subgraph matching using homomorphism

@ gStore , chameleon-db

FILTER(?r > 4.0)

. revirating @

movie:relatedBook

‘ “The Passenger” ‘ ‘ “The Last Tycoon”

“Stanley Kubrick Ub@,
Q,O wp:UnitedKingdom | refs:|abel refs:|abel

Crame>
Advantages
» Maintains the graph structure

» Full set of queries can be handled

music_contributor

], refsilabel [ o

Disadvantages
» Graph pattern matching is expensive

v

mdb:film /2685 mdb:film /424 | “1080-05-23" |

“English” lexvo:script/latin

refs:|abel refs:[abel movie:actef_name!
“A Clockwork Orange” “Shelley Duvall” lexvoiso3166/CA

M. Tamer Ozsu VLDB 2019



Scaling-out RDF Engines

@ Cloud-based solutions
o RDF dataset D is partitioned into {Ds,...,D,} and placed on cloud
platforms (such as HDFS, HBase)
o SPARQL query is run through MapReduce jobs
o Data parallel execution
o Examples: HARD , HadoopRDF
, EAGRE and JenaHBase

© M. Tamer Ozsu VLDB 2019 (2019/08/27) 26



Scaling-out RDF Engines

@ Cloud-based solutions

@ Partition-based approaches
e Partition an RDF dataset D into fragments {Ds,...,D,} each of
which is located at a site
o SPARQL query Q is decomposed into a set of subqueries {Q, ..., Qk}
o Distributed execution of {Q1, ..., Qc} over {Dy,...,D,}

o Examples: GraphPartition , WARP
, Partout , Vertex-block

(2019/08/27) 26
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Scaling-out RDF Engines

@ Cloud-based solutions
@ Partition-based approaches

e Partial Query Evaluation (PQE)

o Partition an RDF dataset D into several fragments {Ds, ..., D,} each
of which is located at a site

o SPARQL query is not decomposed; the full query is sent to each site

e PQE at each site producing partial results

o Join the results (similar to distributed join processing) to find matching
edges that might cross fragments

o Distributed gStore

. Tamer Ozsu VLDB 2019 (2019/08/27) 26



What are Some Open Issues?

@ These systems are not performant or scalable to large data sets
What is the right scale-out architecture and techniques?

It is not clear what the best storage format is

Optimization of SPARQL queries

RDF Engines require more experimentation

© M. Tamer Ozsu VLDB 2019 (2019/08/27) 27



What are Some Open Issues?

@ These systems are not performant or scalable to large data sets
@ How to implement SPARQL fully

o Current focus on basic graph patterns (sets of triple patterns)

e Additional constructs, e.g., property paths, OPTIONAL, UNION,
FILTER, aggregation, ...

o Reasoning over RDF needs to be considered = entailment regimes (see
Ontologies and Semantic Web, )

@© M. Tamer Ozsu VLDB 2019 (2019/08/27) 27


https://www.obitko.com/tutorials/ontologies-semantic-web/reasoning.html

What are Some Open Issues?

@ These systems are not performant or scalable to large data sets
@ How to implement SPARQL fully

@ Support for dynamic and streaming RDF graphs

o Few existing systems (e.g., C-SPARQL and
CQUELS ) are early attempts; more work required

© M. Tamer Ozsu VLDB 2019 (2019/08/27) 27



What are Some Open Issues?

These systems are not performant or scalable to large data sets
How to implement SPARQL fully
Support for dynamic and streaming RDF graphs

Data quality over RDF datasets is a real issue
e Some initial work exists, e.g., CLAMS

© M. Tamer Ozsu VLDB 2019 (2019/08/27)



What are Some Open Issues?

These systems are not performant or scalable to large data sets
How to implement SPARQL fully
Support for dynamic and streaming RDF graphs

Data quality over RDF datasets is a real issue

RDF in loT

e Both as a common model across devices, and
e as embedded into devices

© M. Tamer Ozsu VLDB 2019 (2019/08/27)



What are Some Open Issues?

These systems are not performant or scalable to large data sets
How to implement SPARQL fully
Support for dynamic and streaming RDF graphs

Data quality over RDF datasets is a real issue
RDF in loT

&Most important ...

Q@ DB community really needs to get engaged to develop
performant & scalable engines

@ SPARQL is not easy = language front-ends are desperately
needed

© Proper implementation of full SPARQL with optimizations for
performance & scalability

© M. Tamer Ozsu VLDB 2019 (2019/08/27) 27



Graph DBMSs |
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Graph DBMS Properties

@ Property graph model
e Vertices and edges have one or more labels and zero or more properties
e Graph can be directed or undirected

film_3418
label, “The Passenger”
g

film_1267
(label, “The Last Tycoon")

UnitedKingdom

(wikipedjaArticle)

offers_0743424425amazonOffer
(hasRffer)

ge0.2635167

books_0743424425 (name, “United Kingdom")

(rating, 4.7) (population, 62348447)
(creator)
(relatedBook) (based_near)
StephenKing
film 2014

(initial_release_date, “1980-05-23")
(label, “The Shining")
(music_contributor, music_contributor/4110)
(language, (is0639_3/eng)

(Iabel, “English")

(usedin, is03166,/CA)
(usesScript, script/latn))

director_8476
(director_name, “Stanley Kubrick")

actor 30013
(actor_name, “Shelley Duvall")

film 2685
(label, “A Clockwork Orange”)

M. Tamer Ozsu

film_424
(label, “Spartacus” )
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Graph DBMS Properties

@ Property graph model
o Vertices and edges have one or more labels and zero or more properties
e Graph can be directed or undirected

@ Online workloads

e Each query accesses a portion of the graph
Can be assisted by indexes

Query latency is important

Examples

Reachability

Single source shortest-path

Subgraph matching

SPARQL queries

© M. Tamer Ozsu VLDB 2019 (2019/08/27) 29



Graph DBMS Properties

@ Property graph model
o Vertices and edges have one or more labels and zero or more properties
e Graph can be directed or undirected
@ Online workloads
@ Graph query languages
e Regular Queries
@ Unions of Conjunctive Nested 2-Way Regular Path Queries
(UC2NRPQ)
o Formalism for structural graph queries
Cypher (Neo4))
o Declarative, comparable to UCRPQ
Gremlin (TinkerPop)
@ Imperative, XPath like navigation language
G-Core (LDBC)
o Declarative, graphs as first-class citizens
PGQL (Oracle PGX)
@ SQL-like language with pattern matching and reachability

o GSQL (TigerGraph)

© M. Tamer Ozsu VLDB 2019 (2019/08/27)



Property Graph Storage Approaches

@ Key-value stores
o Vertices are keys, entire edge and property information is stored in the
value
o Examples: Titan (Datastax Enterprise Graph), JanusGraph, Dgraph

@© M. Tamer Ozsu VLDB 2019 (2019/08/27) 30



Property Graph Storage Approaches

@ Key-value stores
o Vertices are keys, entire edge and property information is stored in the
value
o Examples: Titan (Datastax Enterprise Graph), JanusGraph, Dgraph

@ Ternary tables

e Each edge, vertex and property is a separate record
o E.g., Neo4j keeps data in separate files, each of which holds data of
one type (nodes/relations/properties)

@© M. Tamer Ozsu VLDB 2019 (2019/08/27) 30



Property Graph Storage Approaches

@ Key-value stores
o Vertices are keys, entire edge and property information is stored in the
value
o Examples: Titan (Datastax Enterprise Graph), JanusGraph, Dgraph

@ Ternary tables

e Each edge, vertex and property is a separate record
o E.g., Neo4j keeps data in separate files, each of which holds data of
one type (nodes/relations/properties)

@ Pivoted tables

o Similar to above, tables are pivoted

e This is similar to property table approach in RDF engines

e Each column is a property key and the column value is the property
value

o All properties of a vertex is stored in a single row

o Examples: SAP Hana Graph, IBM SQLGraph

. Tamer Ozsu VLDB 2019 (2019/08/27)



Graph Querying [Bonifati et al., 2018]

@ Querying graph topology and graph properties
o Data queries are essentially relational queries
o Querying these are usually treated separately
o Core graph query functionalities

e Path navigation (reachability) queries
e Subgraph pattern queries

© M. Tamer Ozsu VLDB 2019 (2019/08/27)



Reachability Queries

film_3418

(label, “The Last Tycoon™)

I:Umted:(:lmgdom (label, “The Passenger")
offers_0743424425amazonOffer (wikiped{aArticle)
(hasRffer) (adxor) (agt6r)
£e0-2635167
books_0743424425 (name, “United Kingdom™)
(population, 62348447) actor 29704
(actor_name, “Jack Nicholson")

(rating, 4.7)

(cregtor)
(based_near)

v
StephenKing

film_2014
(initial_release_date, “1980-05-23")
(Iabel, “The Shining”)
(music_contributor, music_contributor/4110)
(language, (is0639_3/eng)
(label, “English” )
(usedln, is03166,/CA)
(usesScript, script/latn))

(dirgctor)
actor_30013
(actor_name, “Shelley Duvall”)

director_8476
(director_name, “Stanley Kubrick")

film_2685
(label, “A Clockwork Orange")
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Reachability Queries

film_3418

(label, “The Last Tycoon™)

I:Umted:(:lmgdom (label, “The Passenger")
offers_0743424425amazonOffer (wikiped{aArticle)
(hasRffer) (adxor) (agt6r)
£e0-2635167
books_0743424425 (name, “United Kingdom™)
(population, 62348447) actor 29704
(actor_name, “Jack Nicholson")

(rating, 4.7)

(cregtor)
(based_near)

v
StephenKing

film_2014
(initial_release_date, “1980-05-23")
(Iabel, “The Shining”)
(music_contributor, music_contributor/4110)
(language, (is0639_3/eng)
(label, “English” )
(usedln, is03166,/CA)
(usesScript, script/latn))

(dirgctor)
director_8476 actor_30013
(director_name, “Stanley Kubrick”) (actor_name, “Shelley Duvall")

film_424
(label. “Spartacus”)

film_2685

(label. “A Clockwork Orange”)
Is there a book whose rating is > 4.0 associated with a film that
was directed by Stanley Kubrick?

M. Tamer Ozsu




Reachability Queries

Think of Facebook graph and finding friends of friends. J
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Path (Reachability) Query Execution Approaches

@ This is computing the transitive closure

e Fully materialized: O(n* m) index time (n vertices, m edges), O(1)
query time

e BFS/DFS: O(1) index time, O(n+ m) query time

@© M. Tamer Ozsu VLDB 2019
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Path (Reachability) Query Execution Approaches

@ This is computing the transitive closure

e Fully materialized: O(n* m) index time (n vertices, m edges), O(1)

query time

e BFS/DFS: O(1) index time, O(n+ m) query time

Index construction time

A 2-hop
n3|TC| [
Full TC
nxm [ ]
Chain-Cover
n+c3/2n [ ]
GRAIL
c(n+ m) [ J e

BFL

n+m

BFS/DFS
1 @ Desirable [ J
> Query time
1 log ¢ c ml/2 m-—n m+n

@© M. Tamer Ozsu
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Path (Reachability) Query Execution Approaches

Q(p, f) + knows - worksFor - knows™

k ksF k
@ nows ®wor s or@ nows f

knows

@ Regular Path Queries (RPQ)

e RPQ = path query that defines desired paths using a regular expression
= labels of a path form a word in the language specified by RPQ

e Generalization of reachability queries = reachability query = A RPQ
that accepts all words

@ o-RA — Relational Algebra extended with Transitive Closure
o Finite-automata Based RPQ Evaluation
e Traversal guided by an FA: G+

@ Hybrid a-RA & FA-based traversals: Waveguide

© M. Tamer Ozsu VLDB 2019 (2019/08/27) 34



Subgraph Matching

FILTER(?r > 4.0)

. rev:rating @

‘ “The Passenger”

‘ “The Last Tycoon” ‘

refs:|abel refs:|abel

‘ mdbfilm /3418 ‘ ‘ mdb:film /1267 ‘

[ 52348447

foaf:bag

movieactor movig‘actor

jed_near

‘ “The Shining” ‘—J'efs label mdb.ﬁlm/2014‘
moviedi moviesdietor

movie:initial

mdb:director/8476

moviedirector

mdbsfilm /2685

‘ “A Clockwork Orange”

moviedirector

mdb:film /424

[spartas

M. Tamer Ozsu

esactor

movi
release_date

1980-05-23"
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Subgraph Pattern Query Execution Approaches

Q(p,c) < knows(p,x) A knows(p,y)A
worksFor(x, c) A worksFor(y, c)

e Conjunctive Graph Queries (CQ)

o Set of edge predicates to define
substructures of interest
e Akin to joins in relational query processing

@ Worst-case Optimal Join Processing
o Leapfrog Triegjoin
o EmptyHeaded

o Generalized hypertree decompositions
o Graphflow Hybrid
o Adaptive, cost-based planning with WCO and binary joins

© M. Tamer Ozsu VLDB 2019 (2019/08/27)



Subgraph Pattern Query Execution Approaches

Q(p,c) < knows(p,x) A knows(p,y)A
worksFor(x, c) A worksFor(y, c)

e Conjunctive Graph Queries (CQ)
o Set of edge predicates to define
substructures of interest
e Akin to joins in relational query processing

@ Worst-case Optimal Join Processing

o Leapfrog Triejoin Research session 28 on
o EmptyHeaded Thursday 16:00

o Generalized hypertree decompdSitions
o Graphflow Hybrid
o Adaptive, cost-based planning with WCO and binary joins

© M. Tamer Ozsu VLDB 2019 (2019/08/27)



What are Some Open Issues?

o Existing systems generally have performance issues

o Generally involve joins of intermediate results, which may be quite large
e There are not extensive performance studies (LDBC is a good start

)
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What are Some Open Issues?

o Existing systems generally have performance issues
@ There is poor locality in graph workloads
e Caching does not help much

A commercial system; LDBC-1

09} i
0.8} — i
0.7 i
0.6 - 4
0.5 4

Hit rate

%

®

2
©s

LDBC Queries
JONativelOLRU
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What are Some Open Issues?

o Existing systems generally have performance issues
@ There is poor locality in graph workloads

e Caching does not help much
o Proper clustering of vertices and edges on pages may reduce page 1/0

(Commercial system; LDBC-1)

[ T—

o
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

Locality

3

Blockid

= Native
= Clustered
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What are Some Open Issues?

o Existing systems generally have performance issues

@ There is poor locality in graph workloads

Caching does not help much

e Proper clustering of vertices and edges on pages may reduce page |/O

o Native graph storage system design requires more work

o What should graph databases cache? (subgraphs, paths, vertices,
query plans, or what)
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What are Some Open Issues?

o Existing systems generally have performance issues
@ There is poor locality in graph workloads

@ Query languages need attention
o Need to capture both graph topology and properties
@ Most current work is simplistic
@ Promising: Register automata-based execution for RPQ evaluation
e Query semantics (and syntax) are still not clarified or standardized
@ Are the proposed languages complete? Proof?
@ How to determine a query is safe?
o G-Core effort is important

© M. Tamer Ozsu VLDB 2019 (2019/08/27)



What are Some Open Issues?

Existing systems generally have performance issues

There is poor locality in graph workloads

Query languages need attention

Query processing and optimization
o What are the primary operators? Can we have a closed algebra? (see

)

e Advanced query plan generation issues

@© M. Tamer Ozsu VLDB 2019 (2019/08/27) 37



What are Some Open Issues?

Existing systems generally have performance issues

There is poor locality in graph workloads

Query languages need attention

Query processing and optimization

@ Fuzzy querying over uncertain and probabilistic graphs

© M. Tamer Ozsu VLDB 2019 (2019/08/27)



What are Some Open Issues?

Existing systems generally have performance issues

There is poor locality in graph workloads

Query languages need attention

Query processing and optimization

@ Fuzzy querying over uncertain and probabilistic graphs

@ Too much focus on simple homogeneous graphs = multigraphs,
heterogeneous graphs are important
e Some work exists — on multigraphs:
o Constraints on individual edges
o Constraints on a full path

© M. Tamer Ozsu VLDB 2019 (2019/08/27)



What are Some Open Issues?

Existing systems generally have performance issues

There is poor locality in graph workloads

Query languages need attention

Query processing and optimization

@ Fuzzy querying over uncertain and probabilistic graphs

@ Too much focus on simple homogeneous [FETR e e LR,
heterogeneous graphs are important Thursday @ 11:00
e Some work exists — on multigraphs:

o Constraints on individual edges
o Constraints on a full path
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What are Some Open Issues?

Existing systems generally have performance issues

There is poor locality in graph workloads

Query languages need attention

Query processing and optimization

Most important ...
O Disk-based systems = storage system design needs much work
& experimentation
@ Query languages/semantics are current bottleneck =
optimization work would benefit
© Non-trivial scale-out architectures and processing requires
further study

© M. Tamer Ozsu VLDB 2019 (2019/08/27) 37



Graph Analytics Systems |
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Graph Analytics System Properties

@ Property graph model

UnitedKingdom

(wikipedjaArticle)

offers_0743424425amazonOffer

(hasQyffer)
geo 2635167

books 0743424425 name, “United Kingdom”)

(

film_3418
(label, “The Passenger”

actor 29704
cholson” )

(rating, 4.7) (population, 62348447)
(cregtor)
(relatedBook) (based-near)
film_2014

(initial_release_date, “1980-05-23")
(label, “The Shining”)
(music_contributor, music_contributor/4110)
(Ianguage, (is0639_3/eng)

(Iabel, “English")

(usedln, is03166/CA)
(usesScript, script/latn))

director_8476
(director-name, “Stanley Kubrick")

film_2685
(label, "A Clockwork Orange")

actor_30013

(actor_name, “Shelley Duvall")

film_1267
(label, “The Last Tycoon")



Graph Analytics System Properties

@ Property graph model
e Offline workloads

e Each query accesses the entire graph — indexes may not help
o Queries are iterative until a fix point is reached
o Examples
o PageRank
Clustering
Connected components
Diameter finding
Graph colouring
All pairs shortest path
Graph pattern mining
Machine learning algorithms (Belief propagation, Gaussian non-negative
matrix factorization)
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Graph Analytics System Properties

@ Property graph model
e Offline workloads

e Each query accesses the entire graph — indexes may not help
o Queries are iterative until a fix point is reached
o Examples
o PageRank
Clustering
Connected components
Diameter finding
Graph colouring
All pairs shortest path
Graph pattern mining
Machine learning algorithms (Belief propagation, Gaussian non-negative
matrix factorization)

@ Almost all of the existing systems are scale-out
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Can MapReduce be Used for Graph Analytics?
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Can MapReduce be Used for Graph Analytics?

Yes, but not a good idea

» Immutable data & computation is not guaranteed to be on the same
machine in subsequent iterations

» High I/O cost due to repeated read/write to/from store between
iterations
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Can MapReduce be Used for Graph Analytics?

Yes, but not a good idea

» Immutable data & computation is not guaranteed to be on the same
machine in subsequent iterations

» High I/O cost due to repeated read/write to/from store between
iterations

v,

There are systems that try to address these concerns

» Haloop
» GraphX over Spark
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Classification of Graph Analytics Systems [Han, 2015]

@ Programming model
@ Computation model

Computation Model

T T

T
Vertex-centric Partition-centric  Edge-centric
Programming Model
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Programming Models

@ Vertex-centric
o Computation on a vertex is the Q
focus S/
e “Think like a vertex"
e Vertex computation depends on @ Q\
its own state + states of its
neighbors Q

e Compute(vertex v)
o GetValue(), WriteValue(Q) @ Q
N
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Programming Models

@ Vertex-centric

e Partition-centric (Block-centric)

o Computation on an entire
partition is specified

e "“Think like a block” or “Think
like a graph”

e Aim is to reduce the
communication cost among
vertices

@© M. Tamer Ozsu VLDB 2019
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Programming Models

@ Vertex-centric
e Partition-centric (Block-centric) ‘

@ Edge-centric

e Computation is specified on each
edge rather than on each vertex or
block

e Compute(edge e)
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Computational Models

@ Bulk Synchronous Parallel (BSP)

Computation

Superstep 1 Superstep 2 Superstep 3
Machine 1 Machine 1 Machine 1
Machine 2 Machine 2 Machine 2
Machine 3 Machine 3 Machine 3
Communication Communication
Barrier Barrier
Each machine performs At the end of each superstep
computation results are pushed to other
on its graph partition workers
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Computational Models

@ Bulk Synchronous Parallel (BSP)
@ Asynchronous Parallel

e No communication barriers

Machine 2 Machine 2
o Uses the most recent values - -
o Implemented via distributed locking
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Computational Models

@ Bulk Synchronous Parallel (BSP)

@ Asynchronous Parallel

o Gather-Apply-Scatter (GAS)

Similar to BSP, but pull-based

Gather: pull state

Apply: Compute function

Scatter: Update state

Updates of states separated from scheduling
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Classification of Graph Analytics Systems

Vertex-centric
S al GAS
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Classification of Graph Analytics Systems

Vertex-centric
S al GAS
Lo
o] & O
9 Q0
[e] ()’b ,é,@
= 94
- ) Vertex-centric
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-8 o& Asynchronous
3 &
a &
£ &
o
) & ertex-centric\ Partition-centric Edge-centric
& BSP BSP BSP
QD
\:—)‘\Q @(o
¥ @
NN
Q %@\
Q T T

Vertex-centric Partition-centric Edge—éentric
Programming Model
Pregel [Malewicz et al., 2010], Apache Giraph,
GPS [Salihoglu and Widom, 2013], Mizan [Khayyat
et al., 2013], Trinity [Shao et al., 2013]
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Classification of Graph Analytics Syst

Vertex-centric
S al GAS
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o N3 [Yan et al., 2014] [Roy et al., 2013]
NN
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Q T T

Vertex-centric Partition-centric Edge—éentric
Programming Model
Pregel [Malewicz et al., 2010], Apache Giraph,
GPS [Salihoglu and Widom, 2013], Mizan [Khayyat
et al., 2013], Trinity [Shao et al., 2013]
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Classification of Graph Analytics Systems
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OLAP Over Graphs

@ OLAP in RDBMS
o Usage: Data Warehousing + Business Intelligence
e Model: Multidimensional cube
e Operations: Roll-up, drill-down, and slice and dice

@ Analytics that we discussed over graphs is much different
@ Can we do OLAP-style analytics over graphs?
e There is some work

o Graph summarization
Snapshot-based Aggregation
Graph Cube

Pagrol

Gagg Model
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Some Open Problems

@ Current systems would have difficulty scaling to some large graphs
e Graphs with billions of vertices, hundreds of billions edges are
becoming more common
o Brain network is a trillion edge graph
o Even the large graphs we play with are small
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Some Open Problems

@ Current systems would have difficulty scaling to some large graphs
e Graphs with billions of vertices, hundreds of billions edges are
becoming more common
o Brain network is a trillion edge graph
o Even the large graphs we play with are small

@ Integration with data science workflows
e Focus has been mostly on single computation
o Analytics as part of a complete workflow: financial analysis, litigation
analytics
e Single algorithms — systems
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Some Open Problems

@ Current systems would have difficulty scaling to some large graphs
e Graphs with billions of vertices, hundreds of billions edges are
becoming more common
o Brain network is a trillion edge graph
o Even the large graphs we play with are small

@ Integration with data science workflows

e Focus has been mostly on single computation

o Analytics as part of a complete workflow: financial analysis, litigation
analytics

e Single algorithms — systems

@ ML workloads over graphs are interesting and requires more attention
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Some Open Problems

@ Current systems would have difficulty scaling to some large graphs
e Graphs with billions of vertices, hundreds of billions edges are
becoming more common
e Brain network is a trillion edge graph
o Even the large graphs we play with are small

@ Integration with data science workflows

&Most important...

O Are the types of systems we have been focusing on still
relevant & reasonable?

@ Serious scaling = computation over HPC infrastructures
might become important

© Consider analytics as part of a full workflow
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Dynamic & Streaming Graphs |
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Dynamic Graphs

| Time
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Dynamic Graphs

Time
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Dynamic Graphs

Time
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Dynamic Graphs
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Dynamic Graphs

@ Graph sees updates over time
e Update can be both on topology and properties
e Existing work predominantly focusing on topology updates
@ Graph is bounded and fully available to the algorithms
o Computation approaches
e Batch computation of each snapshot
e Incremental computation
o General purpose: Differential dataflow
o Specialized algorithms for specific workloads: E.g., subgraph matching
, shortest path
, connected components
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Differential Dataflow

@ Applies to any data flow computation

@ Does not depend on the semantics of Input B Input A

the computation om

|
U

P2

op3

filter

Output
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Di ntial Dataflow

. _ AA,

@ Applies to any data flow computation AB; AA;
@ Does not depend on the semantics of Input B Input A

the computation op

P2

|
U

op3

filter

Output
AOQOutput
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Differential Dataflow

) ) AA,
@ Applies to any data flow computation AB; AA;
@ Does not depend on the semantics of Input B nput A
the computation op
@ When changes arrive, each operator is change
asked if there are any changes Aopl
o If there are, push the changes to next op2
operator change
o If not, stop = early stop saves work Aop2
op3
change

Aop3

filter

Output
AOQOutput
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Differential Dataflow

) . AA,
@ Applies to any data flow computation AB; AA;
@ Does not depend on the semantics of Input B nput A
the computation op
@ When changes arrive, each operator is change
asked if there are any changes Aopl
o If there are, push the changes to next op2
operator change
o If not, stop = early stop saves work Aop2
o lterative workloads, e.g., graph ops 2
analytics . Aui
. (o]
o Changes come both from input and P

from previous iteration

e Timestamped set of changes

o Uses partial order to optimize
“Generalized incremental dataflow Output
maintenance” AOutput

@© M. Tamer Ozsu VLDB 2019




Streaming Graphs
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Streaming Graphs
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Streaming Graphs
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Streaming Graphs

c) fc)
- 2
’ ’ 4
\B,‘ \A/‘ \D/’
—t———F—F—F—F—F—F+—F+—+—F+—+—> Time
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Streaming Graphs
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Streaming Graphs
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Streaming Graphs

@ Combines two difficult problems:
streaming+graphs

‘

B
F

@ Unbounded = don't see entire graph
@ Streaming rates can be very high

@ Computational models

N e Continuous: for simple
——t—+—+—+—+—F—+—F—F—+—F——+—> Time transactional operations

y y
to t 2 t3 ty t5 te t7 g otttz f3
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Streaming Graphs
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@ Combines two difficult problems:
streaming+graphs

@ Unbounded = don't see entire graph
@ Streaming rates can be very high
@ Computational models
e Continuous: for simple
transactional operations

e Windowed: for more complex
queries

Time
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Continuous Computation

Query: Vertices reachable from vertex A

©
®
® ®
Time | Incoming edge Results
t1 <A,B> {B}
to
t3
ta <B,C> {B,C}
ts (A,D), (D,C) {B,C,D}
te
t7 (C,F), (D,F) {B,C,D,F}
t;
tz (D.E), (AE), (B,E), (E,F) | {B,C,D,F,E}
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Windowed Computation

Query: Vertices reachable from vertex A

Window size=5
©
®
® ®
5] ty
Time | Incoming edge Expired edges | Results
t (A,B) {B}
to
t3
ta. | (B.C) {B.C}
ts (A,D), (D,C) {B,C,D}
te (A,B) {B.C,D}
t7 (C,F), (D,F) {C,D,F}
tg
to (D.E), (AE), (B,E), (E,F) | (B,C) {C,D,F,E}
tio (A,D), (D,C) | {&B,FE}
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Graph Stream Algorithms

@ Unboundedness brings up space issues
o Continuous computation (pure streams) model requires linear space =

unrealistic
e Many graph problems are not solvable (see for a
survey)
e Semi-streaming model = sublinear space
o Sufficient to store vertices but not edges (typically |V| < |E|)

o Approximation for many graph algorithms, spanners
connectivity , matching ,

etc.

VLDB 2019
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Querying Graph Streams

@ Remember graph query functionalities

o Subgraph matching queries & reachability (path) queries
e Doing these in the streaming context
e This is querying beyond simple transactional operations on an incoming
edge
o Edge represents a user purchasing an item — do some operation
o Edge represents events in news — send an alert

@ Subgraph pattern matching under stream of updates

o Windowed join processing

o Graphflow , TurboFlux

@ These are not designed to deal with unboundedness of the data graph
@ Path queries under stream of updates

o Windowed RPQ evaluation on unbounded streams
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Analytics on Graph Streams

e Many use cases

o Recommender systems
o Fraud detection
o ...

@ Existing relevant work
e Snapshot-based systems

@ Aspen , STINGER
o Consistent graph views across updates

e Snapshot + Incremental Computations

o Kineograph , GraPu
Graphln , GraphBolt

o lIdentify and re-process subgraphs that are effected by updates

o Designed to handle high velocity updates
e Cannot handle unbounded streams

e Similar to dynamic graph processing solutions
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Concluding Remarks

&The entire field is pretty much open!...

@ We can do more with dynamic graphs, but efficient systems
that incorporate novel techniques are needed

@ Unboundedness in streams raises real challenges

© Most graph problems are unbounded under edge insert/delete

J
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So, what is the big story?... |
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Take home message!...

&Reorient research...

O A lot of the research has been algorithmic; time to shift focus
to systems-aspects

@ Storage system architectures & structures
O Indexing graph data?

© Query primitives, processing methodology & optimization
techniques
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Take home message!...

&Performance & scaling are real problems...
O There are few independent large-scale performance studies
(e-g.,
)
@ Reasonable benchmarks are emerging: LDBC for graph DBMS

, WatDiv for RDF :
Graph500 for very large graphs
© These are application benchmarks; microbenchmarks for
system testing are needed
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Take home message!...

&Focus on dynamic & streaming graphs...

O We paid enough attention to static graphs; many real graphs
are not static & many real applications require real-time
answers

@ Dynamic # streaming

© Alert: this area is tough and you are not likely to write as
many papers
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Take home message!...

&Common DBMS for RDF & property graphs?

@ They both deal with online workloads and focus on querying

© SPARQL only deals with subgraph queries = how to efficiently
do path queries?

© SPARQL semantics is graph homomorphism; subgraph queries
over property graphs use graph isomorphism

@ Some discussion has started: W3C Workshop on Web
Standardization for Graph Data: Creating Bridges: RDF,
Property Graph and SQL
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Take home message!...

&Looking for graph HTAP systems...
© There are use cases and demand from users/industry

@ We need to decide what type of analytics we are considering:
OLAP or offline workloads

© There is work: TigerGraph, Quegel
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Some Issues That | Did Not Talk About

&Graphs in Al/ML
| Q@ Graphs in ML models
@ ML for graph analytics
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Some Issues That | Did Not Talk About

&Hardware support for graph processing

O Quite a bit of work in using GPUs for acceleration
© Mostly focus on managing GPU restrictions

© Some work on using FPGAs

@ Worthwhile to consider a unified architecture:
CPU+GPU+FPGA

© Use of NVM for both in-memory and on-disk graph systems

J
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Some Issues That | Did Not Talk About

&Security & privacy issues
© What is appropriate security granularity? Can you get
multilevel security as in relational systems?
@ Anonymization of graphs (especially dynamic graphs) is
difficult
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Some Issues That | Did Not Talk About

&Graphs in related/other fields

O Network analysis: E.g., “Networks, Crowds, and Markets",
“Information and Influence Propagation in Social Networks"

@ Biological networks
© Neuroscience: E.g., “"Networks of the Brain”

Q ..
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