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My objectives

1 Discuss a way to coherently position work in the various
communities;

2 A tour across different communities to provide a panoramic
view of the research;

3 Highlight some problems that interest me!

Three things...
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Freud’s Recommendation for a Good Talk...

By Way of Moshe Vardi...
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In the beginning...

... there was IMS

By IBM (along with
Rockwell & Caterpillar)

For the Apollo program

First deployed in 1968

Managing Bill of Materials
(BOM) of Saturn rocket

Hierarchical model because
BOM is hierarchical

Aircraft

Engine

Right engine

Left engine

Body

Fuselage FWD

Section 4

Section 43

Fuselage AFT

Section 46

Empennage

...

Wings

Left Wing

LW Leading Edge

RW Leading Edge

Wing Box

...

Right Wing

...
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In the beginning...

Source: https://dba.stackexchange.com/questions/

119380/er-vs-database-schema-diagrams

... and IDS

By GE

To control their
manufacturing processes

First deployed in 1964

Manufacturing processes
(with scheduling constraints)
form a graph

Network model

Led to CODASYL standard
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Network DBMSs

Network (CODASYL) Data Model 

 
• 4. The arrow is directed to the member of the corresponding set type.  

Consider a more complicated example. Suppose a company produces and sells computers.  
In this case all record types are evident:  

• 1. Computer products that the company sells (PRODUCT);  

• 2. Customers who buy the products (CUSTOMER);  

• 3. Representatives who sell the products (REPRESENT);  

• 4. Sales transactions (TRANSACTION);  

 
All set types are also evident:  

• 1. Product and all transactions which include this company's product (PT);  

• 2. Customer and all transactions which were done by this customer (CT);  

• 3. Representative and all transactions which were done by this representative (RT);  

A current state of the database might look as follows: The Records, for example, might be:  
• 1. Computer products that the company sells (PRODUCT);  

• 2. Customers who buy the products (CUSTOMER);  

• 3. Representatives who sell the products (REPRESENT);  

• 4. Sales transactions (TRANSACTION);  

Network (CODASYL) Data Model 

 

 
The Data Sets might look as follows:  

• 1. Products and all transactions which include these company's products (PT);  

• 2. Customer and all transactions which were done by these customers(CT);  

• 3. Representatives and all transactions which were done by these representatives(RT).  

2.3 Data Updating Facilities 

We have discussed only the first part of Network Data Model - the data description facilities. 
Each data model also includes particular data manipulation facilities - Data Manipulation 
Language (DML). The data manipulation facilities of a concrete DML can be also divided into 
two parts:  

• (i) data update functions;  

• (ii) data retrieve functions.  

The main update functions of a Network data manipulation language are:  
• 1. To store new occurrences of the record type declared in the current data base schema.  

• 2. To modify existing occurrences of the record type declared in the current data base 
schema.  

• 3. To delete existing occurrences of the record type declared in the current data base 
schema.  

• 4. To insert existing occurrences of the record type declared in the current data base 
schema as a member of a certain data set into the exactly one occurrence of this data set.  

• 5.To remove existing occurrence of the member of the data set from the occurrence of 
this data set.  

Putting a new record occurrence into a database: 

CODASYL Language

I FIND with key

I Navigate within the set, within elements of the same
record type, etc

Network models were also used in
I Object DBMSs

I XML

Source: Network (CODASYL) Data Model, https://coronet.iicm.tugraz.at/is/scripts/lesson03.pdf

Déjà vu all over again?
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Modern graphs are different and diverse
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Graph Usage Study [Sahu et al., 2017, 2019]

Objectives

1 What kind of graph data, computations, software, and major challenges real users
have in practice?

2 What types of graph data, computations, software, and major challenges
researchers target in publications?

Methodology

I Online survey

89 participants: 36 researchers;
53 industry
22 graph software products

I Review of academic publications

7 conferences, 3 yrs for each
252 papers

I Review of emails, bug reports, and
feature requests

over 6000 emails and issues

I Personal interviews

4 interviews with survey
participants
4 additional in-person interviews:
2 developers and 2 users

I Applications from white papers

4 graph DBMSs + 4 RDF
engines
12 applications from graph
DBMSs + 5 from RDF engines
(with overlap)
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Major Findings [Sahu et al., 2017, 2019]

1 Graphs are indeed everywhere!

Q1. Which real world entities do your
graphs represent?

Q2. Which non-human entities do your
graphs represent?

2 Graphs are indeed very large!
3 ML on graphs is very popular!

At least 68% of respondents use ML
workload

4 Scalability is the most pressing
challenge!

Followed by visualization & query
languages

5 RDBMS still play an important role!
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More Info – Please read the papers

The Ubiquity of Large Graphs and Surprising Challenges
of Graph Processing

Siddhartha Sahu, Amine Mhedhbi, Semih Salihoglu, Jimmy Lin, M. Tamer Özsu
David R. Cheriton School of Computer Science

University of Waterloo

{s3sahu,amine.mhedhbi,semih.salihoglu,jimmylin,tamer.ozsu}@uwaterloo.ca

ABSTRACT
Graph processing is becoming increasingly prevalent across many
application domains. In spite of this prevalence, there is little re-
search about how graphs are actually used in practice. We conducted
an online survey aimed at understanding: (i) the types of graphs
users have; (ii) the graph computations users run; (iii) the types
of graph software users use; and (iv) the major challenges users
face when processing their graphs. We describe the participants’
responses to our questions highlighting common patterns and chal-
lenges. We further reviewed user feedback in the mailing lists, bug
reports, and feature requests in the source repositories of a large
suite of software products for processing graphs. Through our re-
view, we were able to answer some new questions that were raised
by participants’ responses and identify specific challenges that users
face when using different classes of graph software. The partici-
pants’ responses and data we obtained revealed surprising facts
about graph processing in practice. In particular, real-world graphs
represent a very diverse range of entities and are often very large,
and scalability and visualization are undeniably the most pressing
challenges faced by participants. We hope these findings can guide
future research.
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1. INTRODUCTION
Graph data representing connected entities and their relationships ap-
pear in many application domains, most naturally in social networks,
the web, the semantic web, road maps, communication networks,
biology, and finance, just to name a few examples. There has been
a noticeable increase in the prevalence of work on graph process-
ing both in research and in practice, evidenced by the surge in the
number of different commercial and research software for man-
aging and processing graphs. Examples include graph database
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52, 55], and distributed graph processing systems [17, 21, 27]. In
the academic literature, a large number of publications that study
numerous topics related to graph processing regularly appear across
a wide spectrum of research venues.

Despite their prevalence, there is little research on how graph data
is actually used in practice and the major challenges facing users
of graph data, both in industry and research. In April 2017, we
conducted an online survey across 89 users of 22 different software
products, with the goal of answering 4 high-level questions:

(i) What types of graph data do users have?
(ii) What computations do users run on their graphs?

(iii) Which software do users use to perform their computations?
(iv) What are the major challenges users face when processing their

graph data?

Our major findings are as follows:
• Variety: Graphs in practice represent a very wide variety of enti-

ties, many of which are not naturally thought of as vertices and
edges. Most surprisingly, traditional enterprise data comprised
of products, orders, and transactions, which are typically seen as
the perfect fit for relational systems, appear to be a very common
form of data represented in participants’ graphs.

• Ubiquity of Very Large Graphs: Many graphs in practice are
very large, often containing over a billion edges. These large
graphs represent a very wide range of entities and belong to
organizations at all scales from very small enterprises to very
large ones. This refutes the sometimes heard assumption that
large graphs are a problem for only a few large organizations
such as Google, Facebook, and Twitter.

• Challenge of Scalability: Scalability is unequivocally the most
pressing challenge faced by participants. The ability to process
very large graphs efficiently seems to be the biggest limitation
of existing software.

• Visualization: Visualization is a very popular and central task
in participants’ graph processing pipelines. After scalability,
participants indicated visualization as their second most pressing
challenge, tied with challenges in graph query languages.

• Prevalence of RDBMSes: Relational databases still play an
important role in managing and processing graphs.

Our survey also highlights other interesting facts, such as the preva-
lence of machine learning on graph data, e.g., for clustering vertices,
predicting links, and finding influential vertices.

We further reviewed user feedback in the mailing lists, bug re-
ports, and feature requests in the source code repositories of 22
software products between January and September of 2017 with
two goals: (i) to answer several new questions that the participants’
responses raised; and (ii) to identify more specific challenges in
different classes of graph technologies than the ones we could iden-
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Abstract
Graph processing is becoming increasingly prevalent acrossmany application domains. In spite of this prevalence, there is little
research about how graphs are actually used in practice. We performed an extensive study that consisted of an online survey
of 89 users, a review of the mailing lists, source repositories, and white papers of a large suite of graph software products,
and in-person interviews with 6 users and 2 developers of these products. Our online survey aimed at understanding: (i) the
types of graphs users have; (ii) the graph computations users run; (iii) the types of graph software users use; and (iv) the major
challenges users face when processing their graphs. We describe the participants’ responses to our questions highlighting
common patterns and challenges. Based on our interviews and survey of the rest of our sources, we were able to answer some
new questions that were raised by participants’ responses to our online survey and understand the specific applications that
use graph data and software. Our study revealed surprising facts about graph processing in practice. In particular, real-world
graphs represent a very diverse range of entities and are often very large, scalability and visualization are undeniably the
most pressing challenges faced by participants, and data integration, recommendations, and fraud detection are very popular
applications supported by existing graph software. We hope these findings can guide future research.

Keywords User survey · Graph processing · Graph databases · RDF systems

1 Introduction

Graph data representing connected entities and their relation-
ships appear in many application domains, most naturally in
social networks, the Web, the Semantic Web, road maps,
communication networks, biology, and finance, just to name
a few examples. There has been a noticeable increase in the
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prevalence of work on graph processing both in research and
in practice, evidenced by the surge in the number of different
commercial and research software for managing and pro-
cessing graphs. Examples include graph database systems
[13,20,26,49,65,73,90], RDF engines [52,96], linear alge-
bra software [17,63], visualization software [25,29], query
languages [41,72,78], and distributed graph processing sys-
tems [30,34,40]. In the academic literature, a large number of
publications that study numerous topics related to graph pro-
cessing regularly appear across a wide spectrum of research
venues.

Despite their prevalence, there is little research on how
graph data are actually used in practice and the major chal-
lenges facing users of graph data, both in industry and in
research. InApril 2017,weconducted anonline survey across
89 users of 22 different software products, with the goal of
answering 4 high-level questions:

(i) What types of graph data do users have?
(ii) What computations do users run on their graphs?
(iii) Which software do users use to perform their computa-

tions?
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Example Design Points

Graph Type

RDF
Graphs

Property
Graphs

Graph Dynamism

Static
Graphs

Dynamic
Graphs

Streaming
Graphs

Algorithm Types

Offline Online Dynamic

Workload Types

Online
Queries

Analytics
Workloads

Compute the query result over the graph as it exists.
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Example Design Points

Graph Type

RDF
Graphs

Property
Graphs

Graph Dynamism

Static
Graphs

Dynamic
Graphs

Streaming
Graphs

Algorithm Types

Offline Online Dynamic

Workload Types

Online
Queries

Analytics
Workloads

Compute the query result over the graph incrementally.
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Example Design Points

Graph Type

RDF
Graphs

Property
Graphs

Graph Dynamism

Static
Graphs

Dynamic
Graphs

Streaming
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Algorithm Types

Offline Online Dynamic

Workload Types

Online
Queries

Analytics
Workloads

Perform the analytic computation from scratch on each snapshot.
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Example Design Points – Not all alternatives make sense

Graph Type

RDF
Graphs

Property
Graphs

Graph Dynamism

Static
Graphs

Dynamic
Graphs

Streaming
Graphs

Algorithm Types

Offline Online Dynamic

Batch
Dynamic

Workload Types

Online
Queries

Analytics
Workloads

Dynamic (or batch-dynamic) algorithms do not make sense for static graphs.
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Alternative Classification

Inputs
Input ingestion

Generative model
Queued/non-queued
. . .

Input data
Graph type
Graph characteristics

Graph dynamism
. . .

Input workload
. . .

Processing
Algorithms ...

Output
Output generation (or release) time
Output type
Output interface
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Graph System Architectural Design Decisions

Disk-based vs memory-based

Most graph analytics systems are memory-based
Others are mixed

Scale-up vs scale-out

Controversial point discussed next

Computing paradigm

A number of alternatives exist
Discussed separately for each type of system

© M. Tamer Özsu VLDB 2019 (2019/08/27) 16



Scale-up or Scale-out?

Scale-up: Single machine execution
Graph datasets are small and can fit in a single machine – even in main
memory
Single machine avoids parallel execution complexities (multithreading is
a different issue)

Scale-out: Parallel (cluster) execution

Dataset |V | |E | Regular size Single Machine∗

Live Journal 4,847,571 68,993,773 1.08GB 6.3GB
USA Road 23,947,347 58,333,344 951MB 9.09GB
Twitter 41,652,230 1,468,365,182 26GB 128 GB
UK0705 82,240,700 2,829,101,180 48GB 247GB
World Road 682,496,072 717,016,716 15GB 194GB
CommonCrawl2014 1,727,000,000 64,422,000,000 1.3TB Out of memory

∗ Using (PowerLyra)

There is no way to deal with the emerging real graph sizes on single
(ordinary) machines

Scale-out is the only way to go!...

 

DEPARTMENT: Big Data Bites 

Scale Up or Scale Out for 
Graph Processing? 

This column explores a simple question: scale up or 

scale out for graph processing? Should we simply 

throw “beefier” individual multi-core, large-memory 

machines at graph processing tasks and focus on developing more efficient multi-

threaded algorithms, or are investments in distributed graph processing frameworks and 

accompanying algorithms worthwhile? For rhetorical convenience, I adopt customary 

definitions, referring to the former as scale up and the latter as scale out. Under what 

circumstances should we prefer one approach over the other? 

Whether we should scale up or out for graph processing is a consequential question from two 
perspectives: For big data practitioners, it would be desirable to develop a set of best practices 
that provide guidance to organizations building and deploying graph-processing capabilities. For 
big data researchers, these best practices translate into priorities for future work and provide a 
roadmap prioritizing real-world pain points. 

tl;dr – I advocate scale-up solutions for graph processing as the first thing to try, since they are 
much simpler to design, implement, deploy, and maintain. If you really need distributed scale-
out solutions, it means that your organization has become immensely successful. Not just “suc-
cessful” but on a growth trajectory that is outpacing Moore’s Law (it’ll become clear what this 
means below). This is unlikely to be the case for most organizations, and even if you were fortu-
nate enough to experience such explosive growth, success would likely bring commensurate re-
sources to throw at the problem. So as long as you leave yourself enough headroom, it should be 
possible to build a scale-out graph processing solution just in time. The alternative is sunk costs 
in distributed graph processing infrastructure, which comes with huge parallelization overheads, 
anticipating a problem that never arrives. 

It makes sense to begin by more carefully describing the scope of the problem: the type of graph 
processing I am referring to involves analytical queries to extract insights or to power data prod-
ucts. An example of the former might be clustering a large social network to infer latent commu-
nities of interest. An example of the latter might be building a graph-based recommendation 
system. Typically, these queries require traversing large portions of the graph where throughput, 
not latency, is the more important performance consideration. 

Gartner defines “operational” databases as “relational and non-relational DBMS products suita-
ble for a broad range of enterprise-level transactional applications, and DBMS products support-
ing interactions and observations as alternative types of transactions.” I am specifically not 
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University of Waterloo 
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DEPARTMENT: Big Data Bites 

Response to “Scale Up or 
Scale Out for Graph 
Processing” 

In this article, the authors provide their views on 

whether organizations should scale up or scale out 

their graph computations. This question was explored 

in a previous installment of this column by Jimmy Lin, 

where he made a case for scale-up through several 

examples. In response, the authors discuss three 

cases for scale-out. 

Our colleague Jimmy Lin in the University of Waterloo’s Data Systems Group wrote an article 
for this department giving his perspective on whether organizations should scale up or scale out 
for graph analytics.1 Similarly to that article, for rhetorical convenience, we use “scale up” to re-
fer to using software running on multicore large-memory machines and “scale out” to refer to 
using distributed software running on multiple machines. 

It is difficult to disagree with the central message of Jimmy’s article: For many organizations 
that have large-scale graphs and want to run analytical computations, using a multicore single 
machine with a lot of RAM is a better option than a distributed cluster because single-machine 
software, compared to distributed software, is easier to develop in-house or use out of the box, is 
often more efficient, and is easier to maintain. This is indeed true, and for the social-network 
graphs and the computations discussed in that article—e.g., a search for a diamond structure or 
an online random-walk computation for recommendations—scale-up is likely the better ap-
proach. However, Jimmy’s article gave the impression that only a handful of applications require 
scale-out computing, and it failed to highlight several common scenarios in which scale-out is 
necessary. 

In this response article, we discuss three cases for scale-out: 

• Trillion-edge-size graphs. Several application domains, such as finance, retail, e-com-
merce, telecommunications, and scientific computing, have naturally appearing graphs 
at the trillion-edge-size scale. 

Semih Salihoglu 
University of Waterloo 
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University of Waterloo 

Editor: 
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jimmylin@umd.edu 
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Scale-up or Scale-out?

Scale-up: Single machine execution
Scale-out: Parallel (cluster) execution

Graph data sets grow when they are expanded to their storage formats
Workstations of appropriate size are still expensive
Some graphs are very large: Billions of vertices, hundreds of billions of
edges
Dataset size may not be the only factor ⇒ parallelizing computation is
important
Applications may operate in a distributed environment
Downside: graph partitioning is difficult

Dataset |V | |E | Regular size Single Machine∗

Live Journal 4,847,571 68,993,773 1.08GB 6.3GB
USA Road 23,947,347 58,333,344 951MB 9.09GB
Twitter 41,652,230 1,468,365,182 26GB 128 GB
UK0705 82,240,700 2,829,101,180 48GB 247GB
World Road 682,496,072 717,016,716 15GB 194GB
CommonCrawl2014 1,727,000,000 64,422,000,000 1.3TB Out of memory

∗ Using (PowerLyra)

There is no way to deal with the emerging real graph sizes on single
(ordinary) machines

Scale-out is the only way to go!...
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accompanying algorithms worthwhile? For rhetorical convenience, I adopt customary 

definitions, referring to the former as scale up and the latter as scale out. Under what 

circumstances should we prefer one approach over the other? 

Whether we should scale up or out for graph processing is a consequential question from two 
perspectives: For big data practitioners, it would be desirable to develop a set of best practices 
that provide guidance to organizations building and deploying graph-processing capabilities. For 
big data researchers, these best practices translate into priorities for future work and provide a 
roadmap prioritizing real-world pain points. 

tl;dr – I advocate scale-up solutions for graph processing as the first thing to try, since they are 
much simpler to design, implement, deploy, and maintain. If you really need distributed scale-
out solutions, it means that your organization has become immensely successful. Not just “suc-
cessful” but on a growth trajectory that is outpacing Moore’s Law (it’ll become clear what this 
means below). This is unlikely to be the case for most organizations, and even if you were fortu-
nate enough to experience such explosive growth, success would likely bring commensurate re-
sources to throw at the problem. So as long as you leave yourself enough headroom, it should be 
possible to build a scale-out graph processing solution just in time. The alternative is sunk costs 
in distributed graph processing infrastructure, which comes with huge parallelization overheads, 
anticipating a problem that never arrives. 

It makes sense to begin by more carefully describing the scope of the problem: the type of graph 
processing I am referring to involves analytical queries to extract insights or to power data prod-
ucts. An example of the former might be clustering a large social network to infer latent commu-
nities of interest. An example of the latter might be building a graph-based recommendation 
system. Typically, these queries require traversing large portions of the graph where throughput, 
not latency, is the more important performance consideration. 

Gartner defines “operational” databases as “relational and non-relational DBMS products suita-
ble for a broad range of enterprise-level transactional applications, and DBMS products support-
ing interactions and observations as alternative types of transactions.” I am specifically not 
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DEPARTMENT: Big Data Bites 

Response to “Scale Up or 
Scale Out for Graph 
Processing” 

In this article, the authors provide their views on 

whether organizations should scale up or scale out 

their graph computations. This question was explored 

in a previous installment of this column by Jimmy Lin, 

where he made a case for scale-up through several 

examples. In response, the authors discuss three 

cases for scale-out. 

Our colleague Jimmy Lin in the University of Waterloo’s Data Systems Group wrote an article 
for this department giving his perspective on whether organizations should scale up or scale out 
for graph analytics.1 Similarly to that article, for rhetorical convenience, we use “scale up” to re-
fer to using software running on multicore large-memory machines and “scale out” to refer to 
using distributed software running on multiple machines. 

It is difficult to disagree with the central message of Jimmy’s article: For many organizations 
that have large-scale graphs and want to run analytical computations, using a multicore single 
machine with a lot of RAM is a better option than a distributed cluster because single-machine 
software, compared to distributed software, is easier to develop in-house or use out of the box, is 
often more efficient, and is easier to maintain. This is indeed true, and for the social-network 
graphs and the computations discussed in that article—e.g., a search for a diamond structure or 
an online random-walk computation for recommendations—scale-up is likely the better ap-
proach. However, Jimmy’s article gave the impression that only a handful of applications require 
scale-out computing, and it failed to highlight several common scenarios in which scale-out is 
necessary. 

In this response article, we discuss three cases for scale-out: 

• Trillion-edge-size graphs. Several application domains, such as finance, retail, e-com-
merce, telecommunications, and scientific computing, have naturally appearing graphs 
at the trillion-edge-size scale. 
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Scale-up or Scale-out?

Scale-up: Single machine execution

Scale-out: Parallel (cluster) execution

Dataset |V | |E | Regular size Single Machine∗

Live Journal 4,847,571 68,993,773 1.08GB 6.3GB
USA Road 23,947,347 58,333,344 951MB 9.09GB
Twitter 41,652,230 1,468,365,182 26GB 128 GB
UK0705 82,240,700 2,829,101,180 48GB 247GB
World Road 682,496,072 717,016,716 15GB 194GB
CommonCrawl2014 1,727,000,000 64,422,000,000 1.3TB Out of memory

∗ Using (PowerLyra)

There is no way to deal with the emerging real graph sizes on single
(ordinary) machines

Scale-out is the only way to go!...
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Whether we should scale up or out for graph processing is a consequential question from two 
perspectives: For big data practitioners, it would be desirable to develop a set of best practices 
that provide guidance to organizations building and deploying graph-processing capabilities. For 
big data researchers, these best practices translate into priorities for future work and provide a 
roadmap prioritizing real-world pain points. 

tl;dr – I advocate scale-up solutions for graph processing as the first thing to try, since they are 
much simpler to design, implement, deploy, and maintain. If you really need distributed scale-
out solutions, it means that your organization has become immensely successful. Not just “suc-
cessful” but on a growth trajectory that is outpacing Moore’s Law (it’ll become clear what this 
means below). This is unlikely to be the case for most organizations, and even if you were fortu-
nate enough to experience such explosive growth, success would likely bring commensurate re-
sources to throw at the problem. So as long as you leave yourself enough headroom, it should be 
possible to build a scale-out graph processing solution just in time. The alternative is sunk costs 
in distributed graph processing infrastructure, which comes with huge parallelization overheads, 
anticipating a problem that never arrives. 

It makes sense to begin by more carefully describing the scope of the problem: the type of graph 
processing I am referring to involves analytical queries to extract insights or to power data prod-
ucts. An example of the former might be clustering a large social network to infer latent commu-
nities of interest. An example of the latter might be building a graph-based recommendation 
system. Typically, these queries require traversing large portions of the graph where throughput, 
not latency, is the more important performance consideration. 

Gartner defines “operational” databases as “relational and non-relational DBMS products suita-
ble for a broad range of enterprise-level transactional applications, and DBMS products support-
ing interactions and observations as alternative types of transactions.” I am specifically not 
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for graph analytics.1 Similarly to that article, for rhetorical convenience, we use “scale up” to re-
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It is difficult to disagree with the central message of Jimmy’s article: For many organizations 
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software, compared to distributed software, is easier to develop in-house or use out of the box, is 
often more efficient, and is easier to maintain. This is indeed true, and for the social-network 
graphs and the computations discussed in that article—e.g., a search for a diamond structure or 
an online random-walk computation for recommendations—scale-up is likely the better ap-
proach. However, Jimmy’s article gave the impression that only a handful of applications require 
scale-out computing, and it failed to highlight several common scenarios in which scale-out is 
necessary. 
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Scale-up or Scale-out?

Scale-up: Single machine execution

Scale-out: Parallel (cluster) execution

Dataset |V | |E | Regular size Single Machine∗

Live Journal 4,847,571 68,993,773 1.08GB 6.3GB
USA Road 23,947,347 58,333,344 951MB 9.09GB
Twitter 41,652,230 1,468,365,182 26GB 128 GB
UK0705 82,240,700 2,829,101,180 48GB 247GB
World Road 682,496,072 717,016,716 15GB 194GB
CommonCrawl2014 1,727,000,000 64,422,000,000 1.3TB Out of memory

∗ Using (PowerLyra)

There is no way to deal with the emerging real graph sizes on single
(ordinary) machines

Scale-out is the only way to go!...

 

DEPARTMENT: Big Data Bites 

Scale Up or Scale Out for 
Graph Processing? 

This column explores a simple question: scale up or 

scale out for graph processing? Should we simply 

throw “beefier” individual multi-core, large-memory 

machines at graph processing tasks and focus on developing more efficient multi-

threaded algorithms, or are investments in distributed graph processing frameworks and 

accompanying algorithms worthwhile? For rhetorical convenience, I adopt customary 

definitions, referring to the former as scale up and the latter as scale out. Under what 

circumstances should we prefer one approach over the other? 

Whether we should scale up or out for graph processing is a consequential question from two 
perspectives: For big data practitioners, it would be desirable to develop a set of best practices 
that provide guidance to organizations building and deploying graph-processing capabilities. For 
big data researchers, these best practices translate into priorities for future work and provide a 
roadmap prioritizing real-world pain points. 

tl;dr – I advocate scale-up solutions for graph processing as the first thing to try, since they are 
much simpler to design, implement, deploy, and maintain. If you really need distributed scale-
out solutions, it means that your organization has become immensely successful. Not just “suc-
cessful” but on a growth trajectory that is outpacing Moore’s Law (it’ll become clear what this 
means below). This is unlikely to be the case for most organizations, and even if you were fortu-
nate enough to experience such explosive growth, success would likely bring commensurate re-
sources to throw at the problem. So as long as you leave yourself enough headroom, it should be 
possible to build a scale-out graph processing solution just in time. The alternative is sunk costs 
in distributed graph processing infrastructure, which comes with huge parallelization overheads, 
anticipating a problem that never arrives. 

It makes sense to begin by more carefully describing the scope of the problem: the type of graph 
processing I am referring to involves analytical queries to extract insights or to power data prod-
ucts. An example of the former might be clustering a large social network to infer latent commu-
nities of interest. An example of the latter might be building a graph-based recommendation 
system. Typically, these queries require traversing large portions of the graph where throughput, 
not latency, is the more important performance consideration. 

Gartner defines “operational” databases as “relational and non-relational DBMS products suita-
ble for a broad range of enterprise-level transactional applications, and DBMS products support-
ing interactions and observations as alternative types of transactions.” I am specifically not 
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DEPARTMENT: Big Data Bites 

Response to “Scale Up or 
Scale Out for Graph 
Processing” 

In this article, the authors provide their views on 

whether organizations should scale up or scale out 

their graph computations. This question was explored 

in a previous installment of this column by Jimmy Lin, 

where he made a case for scale-up through several 

examples. In response, the authors discuss three 

cases for scale-out. 

Our colleague Jimmy Lin in the University of Waterloo’s Data Systems Group wrote an article 
for this department giving his perspective on whether organizations should scale up or scale out 
for graph analytics.1 Similarly to that article, for rhetorical convenience, we use “scale up” to re-
fer to using software running on multicore large-memory machines and “scale out” to refer to 
using distributed software running on multiple machines. 

It is difficult to disagree with the central message of Jimmy’s article: For many organizations 
that have large-scale graphs and want to run analytical computations, using a multicore single 
machine with a lot of RAM is a better option than a distributed cluster because single-machine 
software, compared to distributed software, is easier to develop in-house or use out of the box, is 
often more efficient, and is easier to maintain. This is indeed true, and for the social-network 
graphs and the computations discussed in that article—e.g., a search for a diamond structure or 
an online random-walk computation for recommendations—scale-up is likely the better ap-
proach. However, Jimmy’s article gave the impression that only a handful of applications require 
scale-out computing, and it failed to highlight several common scenarios in which scale-out is 
necessary. 

In this response article, we discuss three cases for scale-out: 

• Trillion-edge-size graphs. Several application domains, such as finance, retail, e-com-
merce, telecommunications, and scientific computing, have naturally appearing graphs 
at the trillion-edge-size scale. 
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© M. Tamer Özsu VLDB 2019 (2019/08/27) 17



Graph Systems
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DB2-RDF

RDF Engines

Neo4j

JanusGraph

OrientDB

Sparksee

GraphFlow

Trinity

Titan

TigerGraph
Graph DBMSs

Pregel/Giraph

GraphLab

GraphX

GraphChi Blogel

TurboGraph++

Haloop

Graph Analytics
Systems

Amazon Neptune
Oracle Spatial & Graph

There are a number of others!...
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RDF Engines
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RDF Example Instance
Prefixes: mdb=http://data.linkedmdb.org/resource/; geo=http://sws.geonames.org/

bm=http://wifo5-03.informatik.uni-mannheim.de/bookmashup/
lexvo=http://lexvo.org/id/;wp=http://en.wikipedia.org/wiki/

Subject Predicate Object

mdb: film/2014 rdfs:label “The Shining”
mdb:film/2014 movie:initial release date “1980-05-23”’
mdb:film/2014 movie:director mdb:director/8476
mdb:film/2014 movie:actor mdb:actor/29704
mdb:film/2014 movie:actor mdb: actor/30013
mdb:film/2014 movie:music contributor mdb: music contributor/4110
mdb:film/2014 foaf:based near geo:2635167
mdb:film/2014 movie:relatedBook bm:0743424425
mdb:film/2014 movie:language lexvo:iso639-3/eng
mdb:director/8476 movie:director name “Stanley Kubrick”
mdb:film/2685 movie:director mdb:director/8476
mdb:film/2685 rdfs:label “A Clockwork Orange”
mdb:film/424 movie:director mdb:director/8476
mdb:film/424 rdfs:label “Spartacus”
mdb:actor/29704 movie:actor name “Jack Nicholson”
mdb:film/1267 movie:actor mdb:actor/29704
mdb:film/1267 rdfs:label “The Last Tycoon”
mdb:film/3418 movie:actor mdb:actor/29704
mdb:film/3418 rdfs:label “The Passenger”
geo:2635167 gn:name “United Kingdom”
geo:2635167 gn:population 62348447
geo:2635167 gn:wikipediaArticle wp:United Kingdom
bm:books/0743424425 dc:creator bm:persons/Stephen+King
bm:books/0743424425 rev:rating 4.7
bm:books/0743424425 scom:hasOffer bm:offers/0743424425amazonOffer
lexvo:iso639-3/eng rdfs:label “English”
lexvo:iso639-3/eng lvont:usedIn lexvo:iso3166/CA
lexvo:iso639-3/eng lvont:usesScript lexvo:script/Latn

URI Literal

URI
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RDF Graph

mdb:film/2014

“1980-05-23”

movie:initial release date

“The Shining”
refs:label

mob:music contributor
music contributor

lexvo:iso639 3/eng

language

bm:books/0743424425

4.7

rev:rating

bm:persons/StephenKing
dc:creator

bm:offers/0743424425amazonOffer

geo:2635167

“United Kingdom”

gn:name

62348447

gn:population

wp:UnitedKingdom

gn:wikipediaArticle

mdb:actor/29704

“Jack Nicholson”

movie:actor name

mdb:film/3418

“The Passenger”

refs:label

mdb:film/1267

“The Last Tycoon”

refs:label

mdb:director/8476

“Stanley Kubrick”

movie:director name

mdb:film/2685

“A Clockwork Orange”

refs:label

mdb:film/424

“Spartacus”

refs:label

mdb:actor/30013

“Shelley Duvall”

movie:actor name
“English”

rdf:label

lexvo:iso3166/CA

lvont:usedIn
lexvo:script/latin

lvont:usesScript

movie:relatedBook

scam:hasOffer

foaf:based near
movie:actor

movie:director

movie:actor

movie:actor movie:actor

movie:director movie:director
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SPARQL Queries

SELECT ?name
WHERE {

?m r d f s : l a b e l ?name . ?m movie : d i r e c t o r ?d .
?d movie : d i r e c t o r n a m e ” S t a n l e y K u b r i c k ” .
?m movie : r e l a t e d B o o k ?b . ?b r e v : r a t i n g ? r .
FILTER(? r > 4 . 0 )

}

?m ?d
movie:director

?name

rdfs:label

?b

movie:relatedBook

“Stanley Kubrick”

movie:director name

?r
rev:rating

FILTER(?r > 4.0)
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Direct Relational Mapping
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Direct Relational Mapping

Bad Idea!...
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Direct Relational Mapping

SELECT ?name
WHERE {

?m r d f s : l a b e l ?name . ?m movie : d i r e c t o r ?d .
?d movie : d i r e c t o r n a m e ” S t a n l e y K u b r i c k ” .
?m movie : r e l a t e d B o o k ?b . ?b r e v : r a t i n g ? r .
FILTER(? r > 4 . 0 )

}
Subject Property Object
mdb:film/2014 rdfs:label “The Shining”
mdb:film/2014 movie:initial release date “1980-05-23”
mdb:film/2014 movie:director mdb:director/8476
mdb:film/2014 movie:actor mdb:actor/29704
mdb:film/2014 movie:actor mdb: actor/30013
mdb:film/2014 movie:music contributor mdb: music contributor/4110
mdb:film/2014 foaf:based near geo:2635167
mdb:film/2014 movie:relatedBook bm:0743424425
mdb:film/2014 movie:language lexvo:iso639-3/eng
mdb:director/8476 movie:director name “Stanley Kubrick”
mdb:film/2685 movie:director mdb:director/8476
mdb:film/2685 rdfs:label “A Clockwork Orange”
mdb:film/424 movie:director mdb:director/8476
mdb:film/424 rdfs:label “Spartacus”
mdb:actor/29704 movie:actor name “Jack Nicholson”
mdb:film/1267 movie:actor mdb:actor/29704
mdb:film/1267 rdfs:label “The Last Tycoon”
mdb:film/3418 movie:actor mdb:actor/29704
mdb:film/3418 rdfs:label “The Passenger”
geo:2635167 gn:name “United Kingdom”
geo:2635167 gn:population 62348447
geo:2635167 gn:wikipediaArticle wp:United Kingdom
bm:books/0743424425 dc:creator bm:persons/Stephen+King
bm:books/0743424425 rev:rating 4.7
bm:books/0743424425 scom:hasOffer bm:offers/0743424425amazonOffer
lexvo:iso639-3/eng rdfs:label “English”
lexvo:iso639-3/eng lvont:usedIn lexvo:iso3166/CA
lexvo:iso639-3/eng lvont:usesScript lexvo:script/Latn

SELECT T1 . o b j e c t
FROM T as T1 , T as T2 , T as T3 ,

T as T4 , T as T5
WHERE T1 . p=” r d f s : l a b e l ”
AND T2 . p=” movie : r e l a t e d B o o k ”
AND T3 . p=” movie : d i r e c t o r ”
AND T4 . p=” r e v : r a t i n g ”
AND T5 . p=” movie : d i r e c t o r n a m e ”
AND T1 . s=T2 . s
AND T1 . s=T3 . s
AND T2 . o=T4 . s
AND T3 . o=T5 . s
AND T4 . o > 4 . 0
AND T5 . o=” S t a n l e y K u b r i c k ”

Easy to implement
but

too many self-joins!
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Direct Relational Mapping

SELECT ?name
WHERE {

?m r d f s : l a b e l ?name . ?m movie : d i r e c t o r ?d .
?d movie : d i r e c t o r n a m e ” S t a n l e y K u b r i c k ” .
?m movie : r e l a t e d B o o k ?b . ?b r e v : r a t i n g ? r .
FILTER(? r > 4 . 0 )

}
Subject Property Object
mdb:film/2014 rdfs:label “The Shining”
mdb:film/2014 movie:initial release date “1980-05-23”
mdb:film/2014 movie:director mdb:director/8476
mdb:film/2014 movie:actor mdb:actor/29704
mdb:film/2014 movie:actor mdb: actor/30013
mdb:film/2014 movie:music contributor mdb: music contributor/4110
mdb:film/2014 foaf:based near geo:2635167
mdb:film/2014 movie:relatedBook bm:0743424425
mdb:film/2014 movie:language lexvo:iso639-3/eng
mdb:director/8476 movie:director name “Stanley Kubrick”
mdb:film/2685 movie:director mdb:director/8476
mdb:film/2685 rdfs:label “A Clockwork Orange”
mdb:film/424 movie:director mdb:director/8476
mdb:film/424 rdfs:label “Spartacus”
mdb:actor/29704 movie:actor name “Jack Nicholson”
mdb:film/1267 movie:actor mdb:actor/29704
mdb:film/1267 rdfs:label “The Last Tycoon”
mdb:film/3418 movie:actor mdb:actor/29704
mdb:film/3418 rdfs:label “The Passenger”
geo:2635167 gn:name “United Kingdom”
geo:2635167 gn:population 62348447
geo:2635167 gn:wikipediaArticle wp:United Kingdom
bm:books/0743424425 dc:creator bm:persons/Stephen+King
bm:books/0743424425 rev:rating 4.7
bm:books/0743424425 scom:hasOffer bm:offers/0743424425amazonOffer
lexvo:iso639-3/eng rdfs:label “English”
lexvo:iso639-3/eng lvont:usedIn lexvo:iso3166/CA
lexvo:iso639-3/eng lvont:usesScript lexvo:script/Latn

SELECT T1 . o b j e c t
FROM T as T1 , T as T2 , T as T3 ,

T as T4 , T as T5
WHERE T1 . p=” r d f s : l a b e l ”
AND T2 . p=” movie : r e l a t e d B o o k ”
AND T3 . p=” movie : d i r e c t o r ”
AND T4 . p=” r e v : r a t i n g ”
AND T5 . p=” movie : d i r e c t o r n a m e ”
AND T1 . s=T2 . s
AND T1 . s=T3 . s
AND T2 . o=T4 . s
AND T3 . o=T5 . s
AND T4 . o > 4 . 0
AND T5 . o=” S t a n l e y K u b r i c k ”

Easy to implement
but

too many self-joins!

© M. Tamer Özsu VLDB 2019 (2019/08/27) 23



Optimizations to Tabular Representation

Objectives

1 Eliminate/Reduce the number of self-joins

2 Use merge-join

Approaches
1 Property table

Group together the properties that tend to occur in the same (or
similar) subjects
Examples: Jena [Wilkinson, 2006], DB2-RDF [Bornea et al., 2013]

2 Vertically partitioned tables
For each property, build a two-column table, containing both subject
and object, ordered by subjects
Binary tables [Abadi et al., 2007, 2009]

3 Exhaustive indexing
Create indexes for each permutation of the three columns: SPO, SOP,
PSO, POS, OPS, OSP
RDF-3X [Neumann and Weikum, 2008, 2009], Hexastore [Weiss et al.,
2008]
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PSO, POS, OPS, OSP
RDF-3X [Neumann and Weikum, 2008, 2009], Hexastore [Weiss et al.,
2008]
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Graph-based Approach [Zou and Özsu, 2017]

Answering SPARQL query ≡ subgraph matching using homomorphism

gStore [Zou et al., 2011, 2014], chameleon-db [Aluç et al., 2013]

?m ?d
movie:director

?name

rdfs:label

?b

movie:relatedBook

“Stanley Kubrick”

movie:director name

?r
rev:rating

FILTER(?r > 4.0)

mdb:film/2014

“1980-05-23”

movie:initial release date

“The Shining”
refs:label

mob:music contributor
music contributor

lexvo:iso639 3/eng

language

bm:books/0743424425

4.7

rev:rating

bm:persons/StephenKing
dc:creator

bm:offers/0743424425amazonOffer

geo:2635167

“United Kingdom”

gn:name

62348447

gn:population

wp:UnitedKingdom

gn:wikipediaArticle

mdb:actor/29704

“Jack Nicholson”

movie:actor name

mdb:film/3418

“The Passenger”

refs:label

mdb:film/1267

“The Last Tycoon”

refs:label

mdb:director/8476

“Stanley Kubrick”

movie:director name

mdb:film/2685

“A Clockwork Orange”

refs:label

mdb:film/424

“Spartacus”

refs:label

mdb:actor/30013

“Shelley Duvall”

movie:actor name
“English”

rdf:label

lexvo:iso3166/CA

lvont:usedIn
lexvo:script/latin

lvont:usesScript

movie:relatedBook

scam:hasOffer

foaf:based near
movie:actor

movie:director

movie:actor

movie:actor movie:actor

movie:director movie:director

Subgraph
M

atching
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Graph-based Approach [Zou and Özsu, 2017]

Answering SPARQL query ≡ subgraph matching using homomorphism

gStore [Zou et al., 2011, 2014], chameleon-db [Aluç et al., 2013]

?m ?d
movie:director

?name

rdfs:label

?b

movie:relatedBook

“Stanley Kubrick”

movie:director name

?r
rev:rating

FILTER(?r > 4.0)

mdb:film/2014

“1980-05-23”

movie:initial release date

“The Shining”
refs:label

mob:music contributor
music contributor

lexvo:iso639 3/eng

language

bm:books/0743424425

4.7

rev:rating

bm:persons/StephenKing
dc:creator

bm:offers/0743424425amazonOffer

geo:2635167

“United Kingdom”

gn:name

62348447

gn:population

wp:UnitedKingdom

gn:wikipediaArticle

mdb:actor/29704

“Jack Nicholson”

movie:actor name

mdb:film/3418

“The Passenger”

refs:label

mdb:film/1267

“The Last Tycoon”

refs:label

mdb:director/8476

“Stanley Kubrick”

movie:director name

mdb:film/2685

“A Clockwork Orange”

refs:label

mdb:film/424

“Spartacus”

refs:label

mdb:actor/30013

“Shelley Duvall”

movie:actor name
“English”

rdf:label

lexvo:iso3166/CA

lvont:usedIn
lexvo:script/latin

lvont:usesScript

movie:relatedBook

scam:hasOffer

foaf:based near
movie:actor

movie:director

movie:actor

movie:actor movie:actor

movie:director movie:director

Subgraph
M

atching

Advantages

I Maintains the graph structure

I Full set of queries can be handled

Disadvantages

I Graph pattern matching is expensive
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Scaling-out RDF Engines

Cloud-based solutions [Kaoudi and Manolescu, 2015]

RDF dataset D is partitioned into {D1, . . . ,Dn} and placed on cloud
platforms (such as HDFS, HBase)
SPARQL query is run through MapReduce jobs
Data parallel execution
Examples: HARD [Rohloff and Schantz, 2010] , HadoopRDF [Husain
et al., 2011] , EAGRE [Zhang et al., 2013] and JenaHBase [Khadilkar
et al., 2012]
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Scaling-out RDF Engines

Cloud-based solutions [Kaoudi and Manolescu, 2015]

Partition-based approaches

Partition an RDF dataset D into fragments {D1, . . . ,Dn} each of
which is located at a site
SPARQL query Q is decomposed into a set of subqueries {Q1, . . . ,Qk}
Distributed execution of {Q1, . . . ,Qk} over {D1, . . . ,Dn}
Examples: GraphPartition [Huang et al., 2011], WARP [Hose and
Schenkel, 2013] , Partout [Galarraga et al., 2014] , Vertex-block [Lee
and Liu, 2013]
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Scaling-out RDF Engines

Cloud-based solutions [Kaoudi and Manolescu, 2015]

Partition-based approaches

Partial Query Evaluation (PQE)

Partition an RDF dataset D into several fragments {D1, . . . ,Dn} each
of which is located at a site
SPARQL query is not decomposed; the full query is sent to each site
PQE at each site producing partial results
Join the results (similar to distributed join processing) to find matching
edges that might cross fragments
Distributed gStore [Peng et al., 2016]
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What are Some Open Issues?

These systems are not performant or scalable to large data sets

What is the right scale-out architecture and techniques?
It is not clear what the best storage format is
Optimization of SPARQL queries
RDF Engines require more experimentation

How to implement SPARQL fully

Support for dynamic and streaming RDF graphs

Data quality over RDF datasets is a real issue

RDF in IoT
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What are Some Open Issues?

These systems are not performant or scalable to large data sets

How to implement SPARQL fully
Current focus on basic graph patterns (sets of triple patterns)
Additional constructs, e.g., property paths, OPTIONAL, UNION,
FILTER, aggregation, ...
Reasoning over RDF needs to be considered ⇒ entailment regimes (see
Ontologies and Semantic Web, [Tena Cucala et al., 2019])

Support for dynamic and streaming RDF graphs

Data quality over RDF datasets is a real issue

RDF in IoT
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What are Some Open Issues?

These systems are not performant or scalable to large data sets

How to implement SPARQL fully

Support for dynamic and streaming RDF graphs

Few existing systems (e.g., C-SPARQL [Barbieri et al., 2010] and
CQUELS[Phuoc et al., 2011]) are early attempts; more work required

Data quality over RDF datasets is a real issue

RDF in IoT

© M. Tamer Özsu VLDB 2019 (2019/08/27) 27



What are Some Open Issues?

These systems are not performant or scalable to large data sets

How to implement SPARQL fully

Support for dynamic and streaming RDF graphs

Data quality over RDF datasets is a real issue

Some initial work exists, e.g., CLAMS [Farid et al., 2016]

RDF in IoT
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What are Some Open Issues?

These systems are not performant or scalable to large data sets

How to implement SPARQL fully

Support for dynamic and streaming RDF graphs

Data quality over RDF datasets is a real issue

RDF in IoT

Both as a common model across devices, and
as embedded into devices
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What are Some Open Issues?

These systems are not performant or scalable to large data sets

How to implement SPARQL fully

Support for dynamic and streaming RDF graphs

Data quality over RDF datasets is a real issue

RDF in IoT

1 DB community really needs to get engaged to develop
performant & scalable engines

2 SPARQL is not easy ⇒ language front-ends are desperately
needed

3 Proper implementation of full SPARQL with optimizations for
performance & scalability

Most important ...
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Graph DBMSs
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Graph DBMS Properties

Property graph model
Vertices and edges have one or more labels and zero or more properties
Graph can be directed or undirected

Online workloads
Graph query languages

film 2014
(initial release date, “1980-05-23”)

(label, “The Shining”)
(music contributor, music contributor/4110)

(language, (iso639 3/eng)
(label, “English”)

(usedIn, iso3166/CA)
(usesScript, script/latn))

books 0743424425
(rating, 4.7)

StephenKing

(creator)

offers 0743424425amazonOffer

geo 2635167
(name, “United Kingdom”)

(population, 62348447)

UnitedKingdom

(wikipediaArticle)

actor 29704
(actor name, “Jack Nicholson”)

film 3418
(label, “The Passenger”)

film 1267
(label, “The Last Tycoon”)

director 8476
(director name, “Stanley Kubrick”)

film 2685
(label, “A Clockwork Orange”)

film 424
(label, “Spartacus”)

actor 30013
(actor name, “Shelley Duvall”)

(relatedBook)

(hasOffer)

(based near)
(actor)

(director) (actor)

(actor) (actor)

(director) (director)
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Graph DBMS Properties

Property graph model

Vertices and edges have one or more labels and zero or more properties
Graph can be directed or undirected

Online workloads

Each query accesses a portion of the graph
Can be assisted by indexes
Query latency is important
Examples

Reachability
Single source shortest-path
Subgraph matching
SPARQL queries

Graph query languages
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Graph DBMS Properties

Property graph model
Vertices and edges have one or more labels and zero or more properties
Graph can be directed or undirected

Online workloads

Graph query languages
Regular Queries [Reutter et al., 2017]

Unions of Conjunctive Nested 2-Way Regular Path Queries
(UC2NRPQ)
Formalism for structural graph queries

Cypher (Neo4j)
Declarative, comparable to UCRPQ

Gremlin (TinkerPop)
Imperative, XPath like navigation language

G-Core (LDBC) [Angles et al., 2018]
Declarative, graphs as first-class citizens

PGQL (Oracle PGX)
SQL-like language with pattern matching and reachability

GSQL (TigerGraph)
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Property Graph Storage Approaches

Key-value stores

Vertices are keys, entire edge and property information is stored in the
value
Examples: Titan (Datastax Enterprise Graph), JanusGraph, Dgraph

Ternary tables

Each edge, vertex and property is a separate record
E.g., Neo4j keeps data in separate files, each of which holds data of
one type (nodes/relations/properties)

Pivoted tables

Similar to above, tables are pivoted
This is similar to property table approach in RDF engines
Each column is a property key and the column value is the property
value
All properties of a vertex is stored in a single row
Examples: SAP Hana Graph, IBM SQLGraph
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Graph Querying [Bonifati et al., 2018]

Querying graph topology and graph properties

Data queries are essentially relational queries
Querying these are usually treated separately

Core graph query functionalities

Path navigation (reachability) queries
Subgraph pattern queries
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Reachability Queries

film 2014
(initial release date, “1980-05-23”)

(label, “The Shining”)
(music contributor, music contributor/4110)

(language, (iso639 3/eng)
(label, “English”)

(usedIn, iso3166/CA)
(usesScript, script/latn))

books 0743424425
(rating, 4.7)

StephenKing

(creator)

offers 0743424425amazonOffer

geo 2635167
(name, “United Kingdom”)

(population, 62348447)

UnitedKingdom

(wikipediaArticle)

actor 29704
(actor name, “Jack Nicholson”)

film 3418
(label, “The Passenger”)

film 1267
(label, “The Last Tycoon”)

director 8476
(director name, “Stanley Kubrick”)

film 2685
(label, “A Clockwork Orange”)

film 424
(label, “Spartacus”)

actor 30013
(actor name, “Shelley Duvall”)

(relatedBook)

(hasOffer)

(based near)
(actor)

(director) (actor)

(actor) (actor)

(director) (director)

Can you reach film 1267 from film 2014?
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Reachability Queries

film 2014
(initial release date, “1980-05-23”)

(label, “The Shining”)
(music contributor, music contributor/4110)

(language, (iso639 3/eng)
(label, “English”)

(usedIn, iso3166/CA)
(usesScript, script/latn))

books 0743424425
(rating, 4.7)

StephenKing

(creator)

offers 0743424425amazonOffer

geo 2635167
(name, “United Kingdom”)

(population, 62348447)

UnitedKingdom

(wikipediaArticle)

actor 29704
(actor name, “Jack Nicholson”)

film 3418
(label, “The Passenger”)

film 1267
(label, “The Last Tycoon”)

director 8476
(director name, “Stanley Kubrick”)

film 2685
(label, “A Clockwork Orange”)

film 424
(label, “Spartacus”)

actor 30013
(actor name, “Shelley Duvall”)

(relatedBook)

(hasOffer)

(based near)
(actor)

(director) (actor)

(actor) (actor)

(director) (director)

Is there a book whose rating is > 4.0 associated with a film that
was directed by Stanley Kubrick?
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Reachability Queries

Think of Facebook graph and finding friends of friends.
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Path (Reachability) Query Execution Approaches

This is computing the transitive closure

Fully materialized: O(n ∗m) index time (n vertices, m edges), O(1)
query time

BFS/DFS: O(1) index time, O(n + m) query time

Query time

Index construction time

1 log c c m1/2 m − n m + n

1

n + m

c(n + m)

n2 + c3/2n

n ∗m

n3|TC|

Desirable

BFS/DFS

GRAIL [Yildirim et al., 2010]
IP [Wei et al., 2014]
BFL [Su et al., 2017]

Chain-Cover [Chen and Chen, 2008]

Full TC [Simon, 1988]

2-hop [Cohen et al., 2002]
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Path (Reachability) Query Execution Approaches

Regular Path Queries (RPQ)

RPQ = path query that defines desired paths using a regular expression
⇒ labels of a path form a word in the language specified by RPQ
Generalization of reachability queries ⇒ reachability query = A RPQ
that accepts all words

α-RA – Relational Algebra extended with Transitive Closure

Finite-automata Based RPQ Evaluation

Traversal guided by an FA: G+ [Cruz et al., 1987; Mendelzon and
Wood, 1995]

Hybrid α-RA & FA-based traversals: Waveguide [Yakovets et al., 2016]

p x
knows yworksFor

f knows
knows

Q(p, f )← knows · worksFor · knows+
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Subgraph Matching

?m ?d
movie:director

?name

rdfs:label

?b

movie:relatedBook

“Stanley Kubrick”

movie:director name

?r
rev:rating

FILTER(?r > 4.0)

mdb:film/2014

“1980-05-23”

movie:initial release date

“The Shining”
refs:label

bm:books/0743424425

4.7

rev:rating

bm:offers/0743424425amazonOffer

geo:2635167

“United Kingdom”

gn:name

62348447

gn:population

mdb:actor/29704

“Jack Nicholson”

movie:actor name

mdb:film/3418

“The Passenger”

refs:label

mdb:film/1267

“The Last Tycoon”

refs:label

mdb:director/8476

“Stanley Kubrick”

movie:director name

mdb:film/2685

“A Clockwork Orange”

refs:label

mdb:film/424

“Spartacus”

refs:label

mdb:actor/30013

movie:relatedBook

scam:hasOffer

foaf:based near
movie:actor

movie:director
movie:actor

movie:actor movie:actor

movie:director movie:director

Subgraph
M

atching
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Subgraph Pattern Query Execution Approaches

Conjunctive Graph Queries (CQ)

Set of edge predicates to define
substructures of interest
Akin to joins in relational query processing

Worst-case Optimal Join Processing

Leapfrog Triejoin [Veldhuizen, 2014]
EmptyHeaded [Aberger et al., 2017]

Generalized hypertree decompositions

Graphflow Hybrid [Mhedhbi and Salihoglu, 2019]

Adaptive, cost-based planning with WCO and binary joins

p

x

kn
ow

s

y

knows

c

worksFor

wor
ks

For

Q(p, c) ← knows(p, x) ∧ knows(p, y)∧
worksFor(x , c) ∧ worksFor(y , c)
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Subgraph Pattern Query Execution Approaches

Conjunctive Graph Queries (CQ)

Set of edge predicates to define
substructures of interest
Akin to joins in relational query processing

Worst-case Optimal Join Processing

Leapfrog Triejoin [Veldhuizen, 2014]
EmptyHeaded [Aberger et al., 2017]

Generalized hypertree decompositions

Graphflow Hybrid [Mhedhbi and Salihoglu, 2019]

Adaptive, cost-based planning with WCO and binary joins

p

x

kn
ow

s

y

knows

c

worksFor

wor
ks

For

Q(p, c) ← knows(p, x) ∧ knows(p, y)∧
worksFor(x , c) ∧ worksFor(y , c)

Research session 28 on

Thursday 16:00
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What are Some Open Issues?

Existing systems generally have performance issues

Generally involve joins of intermediate results, which may be quite large
There are not extensive performance studies (LDBC is a good start
[Erling et al., 2015])

There is poor locality in graph workloads

Query languages need attention

Query processing and optimization

Fuzzy querying over uncertain and probabilistic graphs [Yuan et al.,

2011, 2012]

Too much focus on simple homogeneous graphs ⇒ multigraphs,
heterogeneous graphs are important

© M. Tamer Özsu VLDB 2019 (2019/08/27) 37



What are Some Open Issues?

Existing systems generally have performance issues
There is poor locality in graph workloads

Caching does not help much

Query languages need attention
Query processing and optimization

Fuzzy querying over uncertain and probabilistic graphs [Yuan et al.,

2011, 2012]
Too much focus on simple homogeneous graphs ⇒ multigraphs,
heterogeneous graphs are important
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What are Some Open Issues?

Existing systems generally have performance issues
There is poor locality in graph workloads

Caching does not help much
Proper clustering of vertices and edges on pages may reduce page I/O

Query languages need attention
Query processing and optimization

Fuzzy querying over uncertain and probabilistic graphs [Yuan et al.,

2011, 2012]

Too much focus on simple homogeneous graphs ⇒ multigraphs,
heterogeneous graphs are important

Graph-aware Disk Layout - Locality Experiments 
 

 

 
 
 
 
 
 
 
 

(Commercial system; LDBC-1)

Native

Clustered
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What are Some Open Issues?

Existing systems generally have performance issues

There is poor locality in graph workloads

Caching does not help much
Proper clustering of vertices and edges on pages may reduce page I/O
Native graph storage system design requires more work
What should graph databases cache? (subgraphs, paths, vertices,
query plans, or what)

Query languages need attention

Query processing and optimization

Fuzzy querying over uncertain and probabilistic graphs [Yuan et al.,

2011, 2012]

Too much focus on simple homogeneous graphs ⇒ multigraphs,
heterogeneous graphs are important
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What are Some Open Issues?

Existing systems generally have performance issues

There is poor locality in graph workloads

Query languages need attention
Need to capture both graph topology and properties

Most current work is simplistic
Promising: Register automata-based execution for RPQ evaluation

Query semantics (and syntax) are still not clarified or standardized

Are the proposed languages complete? Proof?
How to determine a query is safe?
G-Core effort is important

Query processing and optimization

Fuzzy querying over uncertain and probabilistic graphs [Yuan et al.,

2011, 2012]

Too much focus on simple homogeneous graphs ⇒ multigraphs,
heterogeneous graphs are important
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What are Some Open Issues?

Existing systems generally have performance issues

There is poor locality in graph workloads

Query languages need attention

Query processing and optimization

What are the primary operators? Can we have a closed algebra? (see
[Salihoglu and Widom, 2014; Mattson et al., 2013])
Advanced query plan generation issues

Fuzzy querying over uncertain and probabilistic graphs [Yuan et al.,

2011, 2012]

Too much focus on simple homogeneous graphs ⇒ multigraphs,
heterogeneous graphs are important
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© M. Tamer Özsu VLDB 2019 (2019/08/27) 37



What are Some Open Issues?

Existing systems generally have performance issues

There is poor locality in graph workloads

Query languages need attention

Query processing and optimization

Fuzzy querying over uncertain and probabilistic graphs [Yuan et al.,

2011, 2012]

Too much focus on simple homogeneous graphs ⇒ multigraphs,
heterogeneous graphs are important

Some work exists – on multigraphs:

Constraints on individual edges [Erling et al., 2015]

Constraints on a full path [Zhang and Özsu, 2019]
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What are Some Open Issues?

Existing systems generally have performance issues

There is poor locality in graph workloads

Query languages need attention

Query processing and optimization

Fuzzy querying over uncertain and probabilistic graphs [Yuan et al.,

2011, 2012]

Too much focus on simple homogeneous graphs ⇒ multigraphs,
heterogeneous graphs are important

Some work exists – on multigraphs:

Constraints on individual edges [Erling et al., 2015]

Constraints on a full path [Zhang and Özsu, 2019]

Research session 18 on

Thursday @ 11:00
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What are Some Open Issues?

Existing systems generally have performance issues

There is poor locality in graph workloads

Query languages need attention

Query processing and optimization

Fuzzy querying over uncertain and probabilistic graphs [Yuan et al.,

2011, 2012]

Too much focus on simple homogeneous graphs ⇒ multigraphs,
heterogeneous graphs are important

1 Disk-based systems ⇒ storage system design needs much work
& experimentation

2 Query languages/semantics are current bottleneck ⇒
optimization work would benefit

3 Non-trivial scale-out architectures and processing requires
further study

Most important ...

© M. Tamer Özsu VLDB 2019 (2019/08/27) 37



Graph Analytics Systems
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Graph Analytics System Properties

Property graph model

Offline workloads

Each query accesses the entire graph – indexes may not help
Queries are iterative until a fix point is reached
Examples

PageRank
Clustering
Connected components
Diameter finding
Graph colouring
All pairs shortest path
Graph pattern mining
Machine learning algorithms (Belief propagation, Gaussian non-negative
matrix factorization)

Almost all of the existing systems are scale-out

film 2014
(initial release date, “1980-05-23”)

(label, “The Shining”)
(music contributor, music contributor/4110)

(language, (iso639 3/eng)
(label, “English”)

(usedIn, iso3166/CA)
(usesScript, script/latn))

books 0743424425
(rating, 4.7)

StephenKing

(creator)

offers 0743424425amazonOffer

geo 2635167
(name, “United Kingdom”)

(population, 62348447)

UnitedKingdom

(wikipediaArticle)

actor 29704
(actor name, “Jack Nicholson”)

film 3418
(label, “The Passenger”)

film 1267
(label, “The Last Tycoon”)

director 8476
(director name, “Stanley Kubrick”)

film 2685
(label, “A Clockwork Orange”)

film 424
(label, “Spartacus”)

actor 30013
(actor name, “Shelley Duvall”)

(relatedBook)

(hasOffer)

(based near)
(actor)

(director) (actor)

(actor) (actor)

(director) (director)
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Can MapReduce be Used for Graph Analytics?

Yes, but not a good idea

I Immutable data & computation is not guaranteed to be on the same
machine in subsequent iterations

I High I/O cost due to repeated read/write to/from store between
iterations

There are systems that try to address these concerns

I HaLoop [Bu et al., 2010, 2012]

I GraphX over Spark [Gonzalez et al., 2014]
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Classification of Graph Analytics Systems [Han, 2015]

Programming model
Computation model

Vertex-centric Partition-centric Edge-centric

Blo
ck
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nou
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Par
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(B

SP)

Asy
nch

ro
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Gat
her

-A
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Sca
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(G

AS)

Programming Model

C
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p
u
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ti

on
M

o
d
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Programming Models

Vertex-centric

Computation on a vertex is the
focus
“Think like a vertex”
Vertex computation depends on
its own state + states of its
neighbors
Compute(vertex v)

GetValue(), WriteValue()

Partition-centric (Block-centric)

Edge-centric

?
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Programming Models

Vertex-centric

Partition-centric (Block-centric)

Computation on an entire
partition is specified
“Think like a block” or “Think
like a graph”
Aim is to reduce the
communication cost among
vertices

Edge-centric
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Programming Models

Vertex-centric

Partition-centric (Block-centric)

Edge-centric

Computation is specified on each
edge rather than on each vertex or
block
Compute(edge e)

© M. Tamer Özsu VLDB 2019 (2019/08/27) 42



Computational Models

Bulk Synchronous Parallel (BSP) [Valiant, 1990]

Computation

Machine 1

Machine 2

Machine 3

Machine 1

Machine 2

Machine 3

Machine 1

Machine 2

Machine 3

Communication
Barrier

Each machine performs
computation
on its graph partition

At the end of each superstep
results are pushed to other
workers

Communication
Barrier

Superstep 1 Superstep 2 Superstep 3

Asynchronous Parallel
Gather-Apply-Scatter (GAS)

Similar to BSP, but pull-based
Gather: pull state
Apply: Compute function
Scatter: Update state
Updates of states separated from scheduling
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Computational Models

Bulk Synchronous Parallel (BSP) [Valiant, 1990]

Asynchronous Parallel

No communication barriers
Uses the most recent values
Implemented via distributed locking

Machine 1

Machine 2

Machine 3

Machine 1

Machine 2

Machine 3

Gather-Apply-Scatter (GAS)

Similar to BSP, but pull-based
Gather: pull state
Apply: Compute function
Scatter: Update state
Updates of states separated from scheduling
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Computational Models

Bulk Synchronous Parallel (BSP) [Valiant, 1990]

Asynchronous Parallel

Gather-Apply-Scatter (GAS)

Similar to BSP, but pull-based
Gather: pull state
Apply: Compute function
Scatter: Update state
Updates of states separated from scheduling
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Classification of Graph Analytics Systems

Vertex-centric Partition-centric Edge-centric
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Vertex-centric

BSP

Vertex-centric

Asynchronous

Vertex-centric

GAS

Partition-centric

BSP

Edge-centric

BSP

GiraphCU
[Han and Daudjee, 2015]

GraphLab
[Low et al., 2010]

Blogel
[Yan et al., 2014]

X-Stream
[Roy et al., 2013]
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Classification of Graph Analytics Systems

Pregel [Malewicz et al., 2010], Apache Giraph,
GPS [Salihoglu and Widom, 2013], Mizan [Khayyat

et al., 2013], Trinity [Shao et al., 2013]
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Classification of Graph Analytics Systems
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GiraphCU
[Han and Daudjee, 2015]

GraphLab
[Low et al., 2010]

Blogel
[Yan et al., 2014]

X-Stream
[Roy et al., 2013]

?

© M. Tamer Özsu VLDB 2019 (2019/08/27) 44



OLAP Over Graphs

OLAP in RDBMS

Usage: Data Warehousing + Business Intelligence
Model: Multidimensional cube
Operations: Roll-up, drill-down, and slice and dice

Analytics that we discussed over graphs is much different

Can we do OLAP-style analytics over graphs?
There is some work

Graph summarization [Tian et al., 2008]
Snapshot-based Aggregation [Chen et al., 2008]
Graph Cube [Zhao et al., 2011]
Pagrol [Wang et al., 2014]
Gagg Model [Maali et al., 2015]
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Some Open Problems

Current systems would have difficulty scaling to some large graphs

Graphs with billions of vertices, hundreds of billions edges are
becoming more common
Brain network is a trillion edge graph
Even the large graphs we play with are small

Integration with data science workflows

Focus has been mostly on single computation
Analytics as part of a complete workflow: financial analysis, litigation
analytics
Single algorithms → systems

ML workloads over graphs are interesting and requires more attention
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Some Open Problems

Current systems would have difficulty scaling to some large graphs

Graphs with billions of vertices, hundreds of billions edges are
becoming more common
Brain network is a trillion edge graph
Even the large graphs we play with are small

Integration with data science workflows

Focus has been mostly on single computation
Analytics as part of a complete workflow: financial analysis, litigation
analytics
Single algorithms → systems

ML workloads over graphs are interesting and requires more attention

1 Are the types of systems we have been focusing on still
relevant & reasonable?

2 Serious scaling ⇒ computation over HPC infrastructures
might become important

3 Consider analytics as part of a full workflow

Most important...
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Dynamic & Streaming Graphs
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Dynamic Graphs

Time

A

B

C

D

E

F

t1

Graph sees updates over time
Update can be both on topology and properties
Existing work predominantly focusing on topology updates

Graph is bounded and fully available to the algorithms
Computation approaches

Batch computation of each snapshot
Incremental computation

General purpose: Differential dataflow [McSherry et al., 2013]
Specialized algorithms for specific workloads: E.g., subgraph matching
[Ammar et al., 2018; Fan et al., 2011], shortest path [Nannicini
and Liberti, 2008], connected components [McColl et al., 2013]
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Dynamic Graphs
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t2

Graph sees updates over time
Update can be both on topology and properties
Existing work predominantly focusing on topology updates

Graph is bounded and fully available to the algorithms
Computation approaches

Batch computation of each snapshot
Incremental computation

General purpose: Differential dataflow [McSherry et al., 2013]
Specialized algorithms for specific workloads: E.g., subgraph matching
[Ammar et al., 2018; Fan et al., 2011], shortest path [Nannicini
and Liberti, 2008], connected components [McColl et al., 2013]
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Graph sees updates over time
Update can be both on topology and properties
Existing work predominantly focusing on topology updates

Graph is bounded and fully available to the algorithms
Computation approaches

Batch computation of each snapshot
Incremental computation

General purpose: Differential dataflow [McSherry et al., 2013]
Specialized algorithms for specific workloads: E.g., subgraph matching
[Ammar et al., 2018; Fan et al., 2011], shortest path [Nannicini
and Liberti, 2008], connected components [McColl et al., 2013]
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Graph sees updates over time
Update can be both on topology and properties
Existing work predominantly focusing on topology updates

Graph is bounded and fully available to the algorithms
Computation approaches

Batch computation of each snapshot
Incremental computation

General purpose: Differential dataflow [McSherry et al., 2013]
Specialized algorithms for specific workloads: E.g., subgraph matching
[Ammar et al., 2018; Fan et al., 2011], shortest path [Nannicini
and Liberti, 2008], connected components [McColl et al., 2013]
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Graph is bounded and fully available to the algorithms
Computation approaches

Batch computation of each snapshot
Incremental computation

General purpose: Differential dataflow [McSherry et al., 2013]
Specialized algorithms for specific workloads: E.g., subgraph matching
[Ammar et al., 2018; Fan et al., 2011], shortest path [Nannicini
and Liberti, 2008], connected components [McColl et al., 2013]
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Differential Dataflow

Applies to any data flow computation

Does not depend on the semantics of
the computation

When changes arrive, each operator is
asked if there are any changes

If there are, push the changes to next
operator
If not, stop ⇒ early stop saves work

Iterative workloads, e.g., graph
analytics

Changes come both from input and
from previous iteration
Timestamped set of changes
Uses partial order to optimize
“Generalized incremental dataflow
maintenance”

op1

op2

op3

...

filter

Input AInput B

Output

∆A1

∆A2

∆Output

∆B1

change
⇓

∆op1

change
⇓

∆op2

change
⇓

∆op3
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Streaming Graphs

Time
t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13
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Computational models

Continuous: for simple
transactional operations

Windowed: for more complex
queries
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Continuous Computation

Query: Vertices reachable from vertex A

A

B

t1

A

B

C

t4

A

B

C

D

t5

A

B

C

D

F

t7

A

B

C

D

F

E

t9

A

B

C

D

F

E

t12

Time Incoming edge Results

t1 〈A,B〉 {B}
t2

t3

t4 〈B,C〉 {B,C}
t5 〈A,D〉, 〈D,C〉 {B,C,D}
t6

t7 〈C,F〉, 〈D,F〉 {B,C,D,F}
t8

t9 〈D,E〉, 〈A,E〉, 〈B,E〉, 〈E,F〉 {B,C,D,F,E}
t10
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Windowed Computation

Query: Vertices reachable from vertex A
Window size=5
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B

t1

A

B

C

t4
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C

D

t5

A

B

C

D

F

t7

A

B

C

D

F

E

t9

A

B

C

D

F

E

t12

Time Incoming edge Expired edges Results

t1 〈A,B〉 {B}
t2

t3

t4 〈B,C〉 {B,C}
t5 〈A,D〉, 〈D,C〉 {B,C,D}
t6 〈A,B〉 {B,C,D}
t7 〈C,F〉, 〈D,F〉 {C,D,F}
t8

t9 〈D,E〉, 〈A,E〉, 〈B,E〉, 〈E,F〉 〈B,C〉 {C,D,F,E}
t10 〈A,D〉, 〈D,C〉 {C,D,F,E}
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Graph Stream Algorithms

Unboundedness brings up space issues
Continuous computation (pure streams) model requires linear space ⇒
unrealistic

Many graph problems are not solvable (see [McGregor, 2014] for a
survey)

Semi-streaming model ⇒ sublinear space [Feigenbaum et al., 2005]

Sufficient to store vertices but not edges (typically |V | � |E |)
Approximation for many graph algorithms, spanners [Elkin, 2011],
connectivity [Feigenbaum et al., 2005], matching [Kapralov, 2013],
etc.
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Querying Graph Streams

Remember graph query functionalities

Subgraph matching queries & reachability (path) queries
Doing these in the streaming context
This is querying beyond simple transactional operations on an incoming
edge

Edge represents a user purchasing an item → do some operation
Edge represents events in news → send an alert

Subgraph pattern matching under stream of updates

Windowed join processing
Graphflow [Kankanamge et al., 2017], TurboFlux [Kim et al., 2018]
These are not designed to deal with unboundedness of the data graph

Path queries under stream of updates

Windowed RPQ evaluation on unbounded streams
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Analytics on Graph Streams

Many use cases

Recommender systems
Fraud detection [Qiu et al., 2018]
...

Existing relevant work
Snapshot-based systems

Aspen [Dhulipala et al., 2019], STINGER [Ediger et al., 2012]
Consistent graph views across updates

Snapshot + Incremental Computations

Kineograph [Cheng et al., 2012], GraPu [Sheng et al., 2018],
GraphIn [Sengupta et al., 2016], GraphBolt [Mariappan and Vora,
2019]
Identify and re-process subgraphs that are effected by updates

Designed to handle high velocity updates
Cannot handle unbounded streams

Similar to dynamic graph processing solutions
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Concluding Remarks

1 We can do more with dynamic graphs, but efficient systems
that incorporate novel techniques are needed

2 Unboundedness in streams raises real challenges

3 Most graph problems are unbounded under edge insert/delete

The entire field is pretty much open!...
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So, what is the big story?...
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Take home message!...

1 A lot of the research has been algorithmic; time to shift focus
to systems-aspects

2 Storage system architectures & structures

3 Indexing graph data?

4 Query primitives, processing methodology & optimization
techniques

Reorient research...
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Take home message!...

1 There are few independent large-scale performance studies
(e.g., [Rusu and Huang, 2019; Han et al., 2014; Ammar and Özsu,

2018])

2 Reasonable benchmarks are emerging: LDBC for graph DBMS
[Erling et al., 2015], WatDiv for RDF [Aluç et al., 2014],
Graph500 for very large graphs

3 These are application benchmarks; microbenchmarks for
system testing are needed

Performance & scaling are real problems...
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Take home message!...

1 We paid enough attention to static graphs; many real graphs
are not static & many real applications require real-time
answers

2 Dynamic 6= streaming

3 Alert: this area is tough and you are not likely to write as
many papers

Focus on dynamic & streaming graphs...
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Take home message!...

1 They both deal with online workloads and focus on querying

2 SPARQL only deals with subgraph queries ⇒ how to efficiently
do path queries?

3 SPARQL semantics is graph homomorphism; subgraph queries
over property graphs use graph isomorphism

4 Some discussion has started: W3C Workshop on Web
Standardization for Graph Data: Creating Bridges: RDF,
Property Graph and SQL

Common DBMS for RDF & property graphs?
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Take home message!...

1 There are use cases and demand from users/industry

2 We need to decide what type of analytics we are considering:
OLAP or offline workloads

3 There is work: TigerGraph, Quegel [Yan et al., 2016]

Looking for graph HTAP systems...
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Some Issues That I Did Not Talk About

1 Graphs in ML models

2 ML for graph analytics

Graphs in AI/ML
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Some Issues That I Did Not Talk About

1 Quite a bit of work in using GPUs for acceleration

2 Mostly focus on managing GPU restrictions

3 Some work on using FPGAs

4 Worthwhile to consider a unified architecture:
CPU+GPU+FPGA

5 Use of NVM for both in-memory and on-disk graph systems

Hardware support for graph processing
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Some Issues That I Did Not Talk About

1 What is appropriate security granularity? Can you get
multilevel security as in relational systems?

2 Anonymization of graphs (especially dynamic graphs) is
difficult

Security & privacy issues

© M. Tamer Özsu VLDB 2019 (2019/08/27) 59



Some Issues That I Did Not Talk About

1 Network analysis: E.g., “Networks, Crowds, and Markets”,
“Information and Influence Propagation in Social Networks”

2 Biological networks

3 Neuroscience: E.g., “Networks of the Brain”

4 ...

Graphs in related/other fields
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Thank you!

To the DSG group

... and 40+ grad students and post-docs

To my collaborators ...

To the supporters
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© M. Tamer Özsu VLDB 2019 (2019/08/27) 76

http://www.vldb.org/pvldb/vol7/p1191-wei.pdf


References XVI

Yan, D., Cheng, J., Lu, Y., and Ng, W. (2014). Blogel: A block-centric framework for
distributed computation on real-world graphs. Proc. VLDB Endowment,
7(14):1981–1992. Available from:
http://www.vldb.org/pvldb/vol7/p1981-yan.pdf.
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© M. Tamer Özsu VLDB 2019 (2019/08/27) 77

http://www.vldb.org/pvldb/vol7/p1981-yan.pdf
http://www.vldb.org/pvldb/vol9/p564-yan.pdf
http://dl.acm.org/citation.cfm?id=1920841.1920879


References XVII

Zhang, X., Chen, L., Tong, Y., and Wang, M. (2013). EAGRE: towards scalable I/O
efficient SPARQL query evaluation on the cloud. In Proc. 29th Int. Conf. on Data
Engineering, pages 565–576.
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